Включение тиристора как диода схема: принцип действия, обозначение, основные характеристики и применение

Содержание

принцип действия, обозначение, основные характеристики и применение

В электронике существует такое понятие, как «электронные ключи». Это приборы, имеющие два устойчивых состояния. Одним из их представителей является тиристор, представляющий, по сути, полупроводниковый элемент. Его работа задаётся с помощью тока или напряжения, поступающего на специальный вывод. Применение устройства позволяет управлять мощной нагрузкой, используя слаботочные цепи. При этом его конструкция проста, а принцип работы довольно понятен.

История изобретения

Изобретение тиристора стало возможным после открытия полупроводников и исследования их свойств. После обнаружения в 1600 году английским физиком Уильямом Гилбертом электричества многие инженеры и ученые посвятили себя изучению этого явления. Выдающими людьми, изучающими электромагнетизм в разное время, были: Эрстед, Ампер, Вольт, Фарадей, Максвелл, Кюри, Яблочков. Благодаря их исследованиям и теоретическим догадкам было установлено, что все окружающие твёрдые тела можно разделить на три группы:

  • проводники — вещества, обладающие большим количеством свободных носителей зарядов и способные практически без потерь проводить электрический ток;
  • диэлектрики — физические тела, плохо проводящие ток;
  • полупроводники — материалы, у которых в кристаллической решётке концентрация подвижных зарядов намного ниже, чем количество атомов.

Типичным признаком полупроводников является зависимость их проводимости от изменения температуры или другого внешнего воздействия, например, света, электромагнитного поля.

В 1947 году американцы Бардин, Бреттейн и Шокли создали первый транзистор, что и послужило толчком к бурному развитию полупроводниковой техники. В разных странах начались исследования этих материалов. Так, русским инженером Лошкарёвым была выявленная биполярная диффузия. А Красиловым и Мадояном разработаны образцы германиевых элементов.

В 60-х годах полученные исследования позволили создать чипы, которые содержали несколько объединённых транзисторов. Начали создаваться компании и заводы, выпускающие серийно электронные компоненты. В процессе изучения свойств полупроводников было установлено, что структура монокристаллов, то есть тел, имеющих непрерывную кристаллическую решётку, может иметь три и более p-n переходов.

В зависимости от уровня напряжения, подаваемого на один из них, изменялись состояния других.

Изучая монокристаллы полупроводников, учёные компании Белла выявили их технические характеристики. В дальнейшем её инженеры смогли создать прибор, имеющий третий вывод. С помощью его и происходило управление процессом прохождения тока через весь элемент. Через некоторое время в Дженерал Электроникс анонсировали устройство, получившее название «триак» (thyristor).

Суть устройства

Термин «тиристор» произошёл из-за слияния двух слов: греческого hýra — дверь или вход и английского resistor — сопротивляющийся. Этим названием было названо полупроводниковое устройство, изготавливаемое на основе монокристалла полупроводникового вещества и обладающего тремя и более p-n переходами. При работе этот прибор может иметь два устойчивых положения:

  • закрытое — соответствующее низкой проводимости;
  • открытое — неоказывающее сопротивление прохождению тока.

То есть, перефразируя определения, можно сказать, что тиристор работает как ключ, по аналогии с дверью. В одном его состоянии замок на дверях открыт, и через неё могут свободно проходить люди (электрический ток), а в другом закрыт и дверь заперта. Поэтому нередко его называют электронный выключатель. Выражаясь же научным языком, его правильное название звучит как полупроводник с управляемым вентилем (диодом).

Принятие элементом одного из устойчивых состояний происходит быстро, но не мгновенно. Чтобы сменить одно на другое, используется напряжение. Когда оно есть, тиристор находится в открытом состоянии, а когда нет — закрывается. Для этого используется специальный дополнительный вывод. Поэтому прибор имеет три выхода и по виду похож на транзистор. При этом их принцип действия схож, только в отличие от транзистора тиристор либо полностью пропускает ток, либо препятствует его прохождению.

Принцип работы

Тиристоры по своей сути — это переключающие приборы. Структура простого элемента состоит из n-p-n-p слоёв и имеет три перехода. Два из них работают в прямом направлении, а один в обратном. Прибор имеет две крайние области, называемые анодом (p) и катодом (n). Для понимания принципа действия тиристора его можно представить в виде сдвоенных транзисторов: n-p-n и p-n-p. При этом средняя зона второго транзистора (n) соединена с крайней зоной первого.

В результате получится, что крайние зоны будут являться эмиттерными переходами, а средние — коллекторными. Область базы же первого элемента будет совпадать с коллектором второго и наоборот. Исходя из этого коллекторный ток транзисторов, одновременно будет являться и базовым.

Физические процессы, происходящие в элементе, можно описать следующим образом. При существовании лишь одного перехода в устройстве бы возникал лишь обратный ток, вызванный неосновными носителями заряда. Если к эмиттерному переходу приложить прямое напряжение, то ток коллектора увеличится, а напряжение на нём уменьшится.

В транзисторе для перехода его в режим насыщения (максимальная пропускная способность) на эмиттер подаётся прямое напряжение, при этом оно между базой и коллектором снижается до единичных значений.

Так и в тиристоре. Через переходы анода и катода инжектируются неосновные заряды, приводящие к снижению сопротивления управляющего электрода. При приложении прямого напряжения, то есть к катоду — минусовой потенциал, а к аноду — плюсовой, через прибор начинает протекать небольшой ток. Это состояние соответствует закрытому положению.

Повышение напряжения приводит к инжекции носителей в управляемый переход. В итоге, с одной стороны, увеличивается его сопротивление из-за обеднения основными носителями, так как переход получается включённым в обратном направлении, а с другой — обогащение, связанное с поступлением в его область новых зарядов.

При достижении напряжением определённого значения эти два явления уравновешиваются, и даже возрастание на небольшую величину напряжения приводит к возникновению лавинообразного процесса отпирания тиристора. Это состояние напоминает режим насыщения транзистора. Сопротивление перехода становится минимальным, а величина тока определяется нагрузочным сопротивлением.

Характеристики и параметры

Тиристор — это прибор, одновременно совмещающий в себе три функции: выпрямителя, выключателя и усилителя. Основные свойства, характеризующие прибор можно представить в виде следующих пунктов:

  • тиристор по подобию диода пропускает ток только в одном направлении, то есть работает как выпрямитель;
  • прибор переключается из одного состояния в другое при помощи напряжения;
  • величина тока, необходимая для переключения тиристора, составляет порядка нескольких миллиампер, при этом он может пропускать через себя десятки ампер;
  • изменяя время приложенного сигнала к управляющему выводу, можно регулировать среднее значение тока, протекающего через нагрузку, другими словами — управлять мощностью.

Главной же функцией, описывающей работу прибора, является вольт-амперная характеристика (ВАХ). Представляет она из себя плоскую систему координат по оси Y, на которой откладывается ток нагрузки, а по оси X — напряжение на управляющем электроде. По виду нелинейности соответствия этих двух величин ВАХ относится к S-типу устройств.

На характеристике используются буквенные обозначения, соответствующие ключевым точкам в работе тиристора. Так, координата (Vbo; IL) соответствует моменту включения, а точка с координатами (Vн; Iн) — открытому состоянию. Зона, лежащая на отрезке с координатами (Vbo; IL) и (Vн; Iн) считается переходной, то есть неустойчивой.

Тиристорный прибор, кроме ВАХ, характеризуется рядом параметров:

  1. Наибольшее постоянное обратное напряжение — значение, при превышении которого наступает пробой перехода.
  2. Напряжение включения — величина сигнала, при достижении которой происходит отпирание элемента.
  3. Допустимый ток — максимальное значение, которое может через себя пропустить радиоприбор без изменения своих характеристик.
  4. Ток удержания — это ток, текущий через анод и провоцирующий запирание элемента.
  5. Падение напряжения — показывает величину энергии, которая рассеивается на приборе (0,5 -1 В).
  6. Максимальна мощность — определяется допустимым током и максимально возможным напряжением, приложенным к управляемым выводам, то есть характером нагрузки.
  7. Время отключения — промежуток времени, за который тиристор полностью закроется. Составляет микросекунды.
  8. Отпирающий постоянный ток управления — обозначает значение, которое необходимо для поддержания устройства в открытом состоянии (анод-катод). Обычно составляет порядка 100 мА.

Конструкция прибора

Любой тиристорный прибор имеет как минимум три вывода: анод, катод и вход. Выпускаются они различными производителями и могут иметь форму таблетки или штыря. Как правило, материалом для их изготовления служит кремний. Он обеспечивает хорошую теплопроводность и может выдерживать большую мощность.

Эмиттерные переходы выполняются по сплавной технологии, а коллекторные — методом диффузии. Используется также и планарная технология. Концентрация примесей в эмиттерных областях делается значительно большей, чем в базовых. При этом самым толстым слоем является центральный. Эти два фактора — толщина и низкая концентрация — позволяют прибору выдерживать довольно большое обратное напряжение (порядка сотен вольт). Анод прибора соединяется с корпусом изделия, что в итоге положительно сказывается на отводе тепла.

Немного другую конструкцию имеют асимметричные тиристоры. В их конструкции катод соединяется с n+ и p зоной, а анод с p+ и n областью. Такие соединения называются анодным или катодным коротким замыканием. Их использование приводит к появлению дополнительного сопротивления межу переходами. Такое подключение уменьшает переходные процессы и время жизни основных носителей.

В простейшую конструкцию тиристора входит основание, соединённое с полупроводниковым кристаллом и являющееся анодом, вывода катода и управляющего электрода. Сверху кристалл накрывается изолятором и крышкой, способствующей защите прибора от механических повреждений и одновременно служащей теплоотводом.

Маркировка радиодетали

Согласно системе, указанной в ГОСТ 10862–72, для обозначения тиристора используется буквенно-цифровой код, состоящий из четырёх символов. Первый элемент кода указывает на вид материала, из которого сделано устройство. Например, Г — германий, К — кремний, А — арсенид галлия. Второй обозначает принадлежность устройства — Н-динистор, У-триак. Третий элемент характеризует функциональность, возможности и номер партии.

Так, числа с 101 до 199 обозначают диодные и незапираемые триодные тиристоры малой мощности, а интервал от 401 до 499 — триодные запираемые тиристоры средней мощности. Последняя буква указывает на тип устройства.

Но после 1989 года была принята новая система обозначений. Поэтому тиристоры, выпускаемые с начала 1989 года, маркировались уже согласно ГОСТ 20859.1.89. В основе этого обозначения используется многозначный код, состоящий из следующих элементов:

  1. На первом месте стоит буква, указывающая тип устройства. Например, ТО — оптотиристор, ТЗ — тиристор запираемый и так далее.
  2. На втором — буква, определяющая тип цепи, в которой может работать тиристор (Ч — высокочастотная, Б — быстродействующая, И — импульсная).
  3. Третья цифра — обозначает порядковый номер.
  4. Четвёртый знак — характеризует габариты корпуса прибора.
  5. Пятый — конструктивное исполнение.
  6. Шестой — допустимый ток.
  7. Седьмой — полярность. Так, буква Х указывает на то, что катод соединён с корпусом.
  8. Восьмой — класс устройства, соответствующий импульсной разности потенциалов для закрытого состояния.
  9. Последующие цифры образуют сочетание классификационных параметров.

На схемах и в литературе тиристор подписывается латинскими буквами VS. Графически же изображается наподобие диода, то есть равностороннего треугольника с вертикальной полосой у его вершины. Через середину основания и вершину проходит линия, символизирующая электрическую цепь. Но в отличие от диода у тиристора от нижней стороны треугольника дополнительно отводится прямая линия, обозначающая управляющий электрод (У).

Классификация и различия

Выпускаемые тиристоры различаются не только по тому, как выглядят, и своим характеристикам, но и по виду проводимости, а также количеству выводов. Существует довольно большое их количество, но при этом их можно классифицировать по следующим признакам:

  1. Способу управления. Разделяют на приборы, управление которыми происходит путём подачи импульса напряжения на анод-катод (динисторы) или тока на управляющей вывод (тринисторы). В свою очередь, последние можно разделить на управляющиеся по аноду или катоду. А также существует ещё один тип приборов, управляемый квантами света (оптотиристор).
  2. Типом обратной проводимости. Существует три вида: проводящие, непроводящие, симметричные (симисторы) — проводящие ток в обоих своих направлениях.
  3. Быстродействию. Существуют как сверхбыстрые приборы, так и обыкновенные.

Существенных отличий между динистором и тринистором нет. Но если в первом отпирание происходит при достижении определённого значения напряжения, то во втором это напряжение может быть совсем несущественным, а переключение происходит из-за подачи импульса определённого значения на дополнительный электрод.

Переключение состояний классических тиристоров происходит снижением величины тока либо в случае динистора изменением полярности. Запирающий же тип отличается тем, что через дополнительный вывод понадобится пропустить ток обратной полярности. Поэтому, пропуская через такой тиристор переменный ток, его работа будет соответствовать импульсному режиму.

Применение электронных переключателей

Характеристики приборов способствуют их применению в различных электротехнических областях. Такой элемент, как тиристор нужен там, где возникает необходимость управлять мощной нагрузкой. Поэтому основным назначением устройства считается коммутация нагрузки путём использования малых токов.

Например, устройства могут применяться в гирлянде с бегущими огнями, импульсных генераторах тока, выпрямительных узлах. Их используют в схемах преобразования постоянного тока в токи промышленного значения, при этом они могут изменять и частоту сигнала. Они применяются при управлении асинхронным двигателем, в системе индукционного нагрева. На тиристорах создаются источники питания повышенной частоты для автономного потребления различными устройствами.

Преобразователи на этом элементе в несколько раз превосходят по технико-экономическим показателям конструкции, выполненные на ионных приборах. Их стоимость и масса меньше, а скорость срабатывания в несколько раз выше.

Использование тиристоров позволяет автоматизировать многие процессы, например, оптотиристором управляют открытием ширмы в театре, а симистором регулируют плавно мощность паяльников или источников освещения. А также с помощью них можно создавать датчики, регистрирующие появление света, тока или напряжения.

Важной особенность элементов является то, что они пропускают через себя высокочастотный и низкочастотный сигнал. Поэтому, собрав мостовую схему из этих устройств, можно сконструировать «трансформатор», например, для сварочного аппарата.

Схема включения

Зачем нужны тиристоры, можно понять, разобравшись в их принципе работы. Для этого есть смысл рассмотреть включение элемента в простейшей схеме. Тиристор в ней используется как электронный ключ.

К аноду тиристора подсоединяется лампочка L, служащая нагрузочным сопротивлением. К ней через кнопку К2 подключается положительная клемма источника питания GB, а его минус подводится к катоду полупроводникового элемента. Подача тока на управляющий электрод выполняется через ограничительный резистор R и кнопку K1.

При замыкании переключателя К2 к аноду и катоду полупроводника будет приложено напряжение, соответствующее величине ЭДС источника питания. При этом прибор будет заперт, ток через него не потечёт, а лампочка не загорится. Чтобы в цепи VS – L появился ток, понадобится отпереть тиристор.

Делается это путём замыкания первого выключателя К1. В этом случае ток от блока питания через К2, К1, R поступит на управляющий электрод тиристора. Элемент изменит своё состояние на открытое, и через него начнёт протекать ток, поступающий с батареи GB. Итогом будет загоревшая лампочка.

Дальнейшее нажатие кнопки K1 никоим образом не будет влиять на состояние схемы. Для того чтобы потушить лампочку, понадобится разорвать цепь кнопкой K2 или отсоединить источник питания. Но при этом тиристор может закрыться и при снижении напряжения на аноде до определённой величины, определяемой параметрами тиристора.

Таким образом, тиристор — это полупроводниковый элемент, использующийся в схемах как электронный ключ. Это возможно благодаря свойствам p-n переходов. При этом, осуществляя коммутацию больших токов, сам прибор имеет небольшие габариты, а его корпус может выдерживать значительную тепловую мощность. Но всё же для предотвращения его повреждения тепловым пробоем часто совместно с элементом используется теплоотвод, представляющий собой, в зависимости от мощности нагрузки, простую алюминиевую пластинку или массивного вида радиатор.

Тиристоры Электрическая Схема — tokzamer. ru

У мощных приборов оно достигает сотен ампер. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден.


Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения. Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях.

В некоторый момент в результате перезарядки конденсатора С2 высокий уровень на выводе 8 элемента DD1.
Зарядное устройство на тиристорах

Существует масса способов достижения полноволнового управления тиристорами.

Тиристор — краткий обзор полупроводника Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод У.

Поэтому я и решил представить эту схему.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Когда тиристор пропускает ток нагрузки в прямом направлении, электрод анода A является положительным по отношению к электроду катода K, с точки зрения регенеративной фиксации.

Практические примеры для повторения Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Тиристорный регулятор напряжения своими руками Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока.

Бюджетные сварочные полуавтоматы#4 подключение тиристора и конденсаторов

Применение тиристора

Виды и устройство. Контроллер нагрева паяльника Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом. В принципе, можно было бы просто заменить полупроводник мощным механическим выключателем.

А это может произойти только в отрицательном полупериоде сетевого напряжения, поступающего на вывод 13 элемента DD1.

Фото — тиристор кун Цена тиристора зависит от его марки и характеристик.

Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1. В этом месте находится ферритовый фильтр высокочастотных помех.

Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Управляемый электрод.

Фиксация состояния удержания остаётся стабильной при положительном полупериоде и автоматически сбрасывается, когда положительный полупериод заканчивается.
Тиристорный модуль SKKT92-12E

Читайте дополнительно: Прокладка кабельных линий в земле снип

Виды современных устройств

Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1.

Рассеиваемая мощность. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. На чертеже ниже представлена цоколевка и основные детали тиристора.

Распространенные отечественные тиристоры выглядят следующим образом.

Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Вот так можно описать, как работает тиристор для чайников. Прибор, содержащий один управляющий электрод, называют триодным тиристором или тринистором [1] иногда просто тиристором, хотя это не совсем правильно. Тиристорная схема регулятора не излучающая помехи Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

У VT1 он должен быть Управляемый электрод.


R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм. Реостат — довольно универсальное приспособление. В общем много привычных устройств построены на тиристорах. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку.

Для большей мощности необходим более мощный симистор, например, ТС Это хорошо демонстрирует схема управления тиристорами, а также любой справочник электриков например, в библиотеке можно бесплатно почитать книгу автора Замятин. Тиристор — краткий обзор полупроводника Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод У. Предлагаемая ниже схема позволит снизить мощность любого нагревательного электроприбора.

Симметричный тринистор называется также симистором или триаком от англ. Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения действующее значение, которое и воспроизводит нагрузку будет намного меньше, чем световое. Само переключение происходит очень быстро, хоть и не мгновенно. Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
Простой регулятор напряжения на тиристоре

Принцип действия тиристора

Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без.

Покопавшись нашел импортные симисторы BTA К основным параметрам, характеризующим регуляторы электрической энергии, относят: плавность регулировки; рабочую и пиковую подводимую мощность; диапазон входного рабочего сигнала; КПД. Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ?

Значение тока, который может протекать через анод-катод. У мощных приборов оно достигает сотен ампер. Он позволяет коммутировать ток 25 А.

После переключения и полной проводки , падение напряжения на участке анод- катод держится постоянным на уровне около 1 вольта, при всех значениях анодного тока от нуля до номинального значения. Он располагается как последовательно, так и параллельно подключённой нагрузке. При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тиристоры выполняются в различных корпусах.

См. также: Подключение участка к электричеству vfnthbfk

Область использования тиристорных устройств

На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Схема собиралась не раз, работает без наладки и других проблем.

Главным отличием является более широкий спектр напряжений. В результате получается генератор прямоугольных импульсов. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Схемы на тиристорах Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. В результате на выходе 11 DD1.

Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока. Другое их название — диммеры. Полный технический расклад тиристора.

С вывода 1 микросхемы DD2. Один управляющий и два, через которые протекает ток.
Симистор (тиристор) вместо реле.

Тиристорный светодиод. Характеристики и принцип работы

Тиристорный светодиод — это отличная альтернатива деталям, существующим на сегодняшний день, которые применяются при изготовлении осветительных приборов. Преимущества LED: долговечность в процессе эксплуатации, низкое потребление электроэнергии и маленькие габаритные размеры.

Принцип работы светодиода

Причиной свечения является процесс рекомбинации положительно заряженных дырок и отрицательно заряженных частиц в зоне p-h-перехода. Эта зона является контактом двух материалов (полупроводников) с разной способностью токопроводимости. Для создания яркого свечения используется многослойная конструкция кристалла светодиода. Яркость его может быть увеличена путем подачи сильного напряжения, но при большом значении силы тока диод может выйти из строя. Яркость LED можно регулировать и в сторону уменьшения. Конструкция его очень проста, но в то же время большинство изготовителей не раскрывает секрет производства своей продукции.

На сегодняшний день современный тиристотный светодиод очень продуктивен, ведь его КПД колеблется от 60 до 70%. Если сравнить лампы накаливания (коэффициент полезного действия которых всего лишь 5–7%) с LED, то последние лучше обычных в десять раз. Срок заявленной эксплуатации осветительных приборов, которые используют тиристорный светодиод, составляет десять лет непрерывного свечения. Экономия электроэнергии при использовании LED, по сравнению с ЛДС, составляет приблизительно 50%, а по сравнению с лампами накаливания — 85%.

Светоотдача современных диодов может конкурировать с МГЛ и ДНаТ (а также ДНаЗ). Показатель этот равняется 150 лм/Вт. Срок окупаемости светодиодных ламп — 2-3 года. Впоследствии оставшиеся десять лет вы экономите 85% электроэнергии, потребляемой каждый месяц.

Светодиоды. Характеристики

LED, характеристики которых не уступают аналогам, имеют такие преимущества:

  • при изготовлении светодиодов не используется стекло, поэтому осветительные лампы такого типа имеют высокие показатели прочности, виброустойчивости и надежности;
  • LED устойчивы к перепадам напряжения и потребляют всего 0. 4-0.6 А;
  • тиристорный светодиод эффективно работает в экстремальных условиях, даже при очень низкой температуре.

Чтобы запустить LED, необходим довольно дорогостоящий диодный мост, отчего цена на осветительные приборы ранее была довольно завышена. Производители решили эту проблему. Электрическая схема была изменена, и вместо тиристорных диммеров были применены симисторные. Получился прибор, состоящий из двух тиристоров, подключенных параллельно-встречным путем. За счет этой инновации необходимость в использовании диодного моста сегодня отсутствует. Это решение привело к удешевлению продукции и значительно повысило класс безопасности и качества товаров на основе тиристоров.

Тиристорный светодиод широко применяется в производстве осветительных приборов. Его продолжительный срок службы, надежность и практичность радуют потребителей, ведь люстры и другие приборы с LED-подсветкой не только экономны, а еще и необычайно красиво выглядят.

что это, принцип работы, свойства, применение

Чтобы понять как работает схема, необходимо знать действие и назначение каждого из элементов. В этой статье рассмотрим принцип работы тиристора, разные виды и режимы работы, характеристики и виды. Постараемся объяснить все максимально доступно, чтобы было понятно даже для начинающих. 

Содержание статьи

Что такое тиристор, его устройство и обозначение на схеме

Тиристор — полупроводниковый элемент, имеющий только два состояния: «открыто» (ток проходит) и «закрыто» (тока нет). Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях. Само переключение происходит очень быстро, хоть и не мгновенно.

Так выглядят тиристоры

По способу действия его можно сравнить с переключателем или ключом. Вот только переключается тиристор при помощи напряжения, а отключается пропаданием тока или снятием нагрузки. Так что принцип работы тиристора понять несложно. Можно представлять его как ключ с электрическим управлением. Так, да не совсем.

Тиристор, как правило, имеет три выхода. Один управляющий и два, через которые протекает ток. Можно попробовать коротко описать принцип работы. При подаче напряжения на управляющий выход, коммутируется цепь через анод-коллектор. То есть, он сравним с транзистором. Только с той разницей, что у транзистора величина пропускаемого тока зависит от поданного на управляющий вывод напряжения. А тиристор либо полностью открыт, либо полностью закрыт.

Внешний вид

Внешний вид тиристора зависит от даты его производства. Элементы времен Советского Союза — металлические, в виде «летающей тарелки» с тремя выводами. Два вывода — катод и управляющий электрод — находятся на «дне» или «крышке» (это с какой стороны смотреть). Причем электрод управления меньше по размерам. Анод может находиться с противоположной стороны от катода, или торчать вбок из-под шайбы, которая есть на корпусе.

Два вида тиристоров — современные и советские, обозначение на схемах

Современные тиристоры выглядят по-другому. Это небольшой пластиковый прямоугольник с металлической пластиной сверху и тремя выводами-ножками снизу. В современном варианте есть одно неудобство: надо смотреть в описании какой из выводов анод, где катод и управляющий электрод. Как правило, первый — анод, затем катод и крайний правый — это электрод. Но это как правило, то есть, не всегда.

Принцип работы

По принципу действия, тиристор можно еще сравнить с диодом. Пропускать ток он будет в одном направлении — от анода к катоду, но происходить это будет только в состоянии «открыто». На схемах тиристор похож на диод. Также имеется анод и катод, но есть еще дополнительный элемент — управляющий электрод. Понятное дело, есть отличия и в выходном напряжении (если сравнивать с диодом).

Принцип работы тиристора в устройствах переменного напряжения: на выходе есть только верхняя часть синусоиды

В схемах переменного напряжения тиристор будет пропускать только одну полуволну — верхнюю. Когда приходит нижняя полуволна, он сбрасывается в состояние «закрыто».

Принцип работы тиристора простыми словами

Рассмотрим принцип работы тиристора. Стартовое состояние элемента — закрыто. «Сигналом» к переходу в состояние «открыто» является появление напряжения между анодом и управляющим выводом. Вернуть тиристор в состояние «закрыто» можно двумя способами:

  • снять нагрузку;
  • уменьшить ток ниже тока удержания (одна из технических характеристик).

В схемах с переменным напряжением, как правило, сбрасывается тиристор по второму варианту. Переменный ток в бытовой сети имеет синусоидальную форму, когда его значение приближается к нулю и происходит сброс. В схемах, питающихся от источников постоянного тока, надо либо принудительно убирать питание, либо снимать нагрузку.

После снятия отпирающего напряжения, тиристор остается в открытом состоянии (лампочка горит)

То есть, работает тиристор в схемах с постоянным и переменным напряжением по-разному. В схеме постоянного напряжения, после кратковременного появления напряжения между анодом и управляющим выводом, элемент переходит в состояние «открыто». Далее может быть два варианта развития событий:

  • Состояние «открыто» держится даже после того, как напряжение анод-выход управления пропало. Такое возможно если напряжение, поданное на анод-управляющий вывод,  выше чем неотпирающее напряжение (эти данные есть в технических характеристиках).  Прекращается прохождение тока через тиристор, фактически только разрывом цепи или выключением источника питания. Причем выключение/обрыв цепи могут быть очень кратковременными. После восстановления цепи, ток не течет до тех пор, пока на анод-управляющий вывод снова не подадут напряжение.
  • После снятия напряжения (оно меньше чем отпирающее) тиристор сразу переходит в состояние «закрыто».

Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без. Но чаще применяют по первому типу — когда он остается открытым.

Если говорить о внутреннем устройстве, то это три перехода P-N-P-N

Принцип работы тиристора в схемах переменного напряжения отличается. Там возвращение в запертое состояние происходит «автоматически» — при падении силы тока ниже порога удержания. Если напряжение на анод-катод подавать постоянно, на выходе тиристора получаем импульсы тока, которые идут с определенной частотой. Именно так построены импульсные блоки питания. При помощи тиристора они преобразуют синусоиду в импульсы.

Проверка работоспособности

Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную схему. Если при прозвонке иметь перед глазами технические характеристики, можно заодно проверить сопротивление переходов.

Один из видов: силовой Т122-25

Прозвонка мультиметром

Для начала разберем прозвонку мультиметром. Переводим прибор в режим прозвонки.

На цифровых мультиметрах есть режим прозвонки, который позволяет проверять полупроводниковые приборы

Далее поочередно прикасаемся щупами к парам выводов:

  • При подключении щупов к аноду и катоду, прибор должен показывать обрыв — «1» или «OL» в зависимости от мультиметра. Если отображаются иные показатели хоть в одном направлении, тиристор пробит.
  • Между анодом и управляющим электродом (выводом) должно быть небольшое сопротивление в одном из направлений. В противоположном — обрыв. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден.

    Проверка тиристора при помощи мультиметра. На левом рисунке на табло отображается «1», т.е. сопротивление между анодом и катодом слишком велико и прибор не может его зафиксировать. На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом

Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Если хотите проверить и сопротивление переходов, посмотрите в технических характеристиках.

Схема проверки работоспособности тиристора мультиметром

На рисунке представлены схемы испытаний. Крайний справа рисунок — усовершенствованный вариант с кнопкой, которую устанавливают между анодом и управляющим выводом. Для того чтобы мультиметр зафиксировал протекающий по цепи ток, кратковременно нажимаем на кнопку.

При помощи лампочки и источника постоянного тока (батарейка тоже пойдет)

Если мультиметра нет, можно проверить тиристор при помощи лампочки и источника питания. Подойдет даже обычная батарейка или любой другой источник постоянного напряжения. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Потребуется еще сопротивление или обычный кусок проволоки. Из этих элементов собирается простая схема:

Схема проверки тиристора при помощи лампочки и источника питания

  • Плюс от источника питания подаем на анод.
  • К катоду подключаем лампочку, второй ее вывод подключаем к минусу источника питания. Лампочка не горит, так как термистор заперт.
  • Кратковременно (при помощи куска проволоки или сопротивления) соединяем анод и управляющий вывод.
  • Лампочка загорается и продолжает гореть, хотя перемычка убрана. Термистор остается в открытом состоянии.
  • Если выкрутить лампочку или выключить источник питания, то лампочка, естественно, погаснет.
  • Если восстановить цепь/питание, она не загорится.

Заодно с проверкой, эта схема позволяет понять принцип работы тиристора. Ведь картинка получается очень наглядной и понятной.

Виды тиристоров и их особые свойства

Полупроводниковые технологии все еще разрабатываются и совершенствуются. За несколько десятилетий появились новые разновидности тиристоров, которые имеют некоторые отличия.

  • Динисторы или диодные тиристоры. Отличаются тем, что имеют только два вывода. Открываются подачей на анод и катод высокого напряжения в виде импульса. Называют еще «неуправляемые тиристоры».
  • Тринисторы или триодные тиристоры. В них есть управляющий электрод, но управляющий импульс может подаваться:
    • На управляющий выход и катод. Название — с управлением катодом.
    • На управляющий электрод и анод. Соответственно — управление анодом.

Тиристоры могут управляться как с анода, так и с катода

Есть также разные виды тиристоров по способу запирания. В одном случае достаточно уменьшения анодного тока ниже уровня тока удержания. В другом случае — подается запирающее напряжение на управляющий электрод.

По проводимости

Мы говорили, что проводят тиристоры ток только в одном направлении. Обратной проводимости нет. Такие элементы называют обратно-непроводящие, но существуют не только такие. Есть и другие варианты:

  • Имеют невысокое обратное напряжение, называются обратно-проводящие.
  • С ненормируемой обратной проводимостью. Ставят в схемах, где обратное напряжение возникнуть не может.
  • Симисторы. Симметричные тиристоры. Проводят ток в обоих направлениях.

Различают в основном, по типу проводимости и способу управления

Тиристоры могут работать в режиме ключа. То есть при поступлении импульса управления подавать ток на нагрузку. Нагрузка, в этом случае, рассчитывается исходя из напряжения в открытом виде. Надо также учитывать наибольшую рассеиваемую мощность. Вот в этом случае лучше выбирать металлические модели в виде «летающей тарелки». К ним удобно приделывать радиатор — для более быстрого охлаждения.

Классификация по особым режимам работы

Еще можно выделить следующие подвиды тиристоров:

  • Запираемые и незапираемые. Принцип работы тиристора незапираемого немного другой. Он находится в открытом состоянии когда плюс приложен к аноду, минус — на катоде. Переходит в закрытое состоянии при смене полярности.
  • Быстродействующие. Имеют малое время перехода из одного состояния в другое.
  • Импульсные. Очень быстро переходит из одного состояние в другое, используется в схемах с импульсными режимами работы.

Основное назначение — включение и выключение мощной нагрузки при помощи маломощных управляющих сигналов

Основная область использования тиристоров — в качестве электронного ключа, служащего для замыкания и размыкания электрической цепи. В общем много привычных устройств построены на тиристорах. Например, гирлянда с бегущими огнями, выпрямители, импульсные источники тока, выпрямители и многие другие.

Характеристики и их значение

Некоторые тиристоры могут коммутировать очень большие токи, в этом случае их называют силовыми тиристорами. Они изготавливаются в металлическом корпусе — для лучшего отвода тепла. Небольшие модели с пластиковым корпусом — это обычно маломощные варианты, которые используют в малоточных схемах. Но, всегда есть исключения. Так что для каждой конкретной цели подбирают требуемый вариант. Подбирают, понятное дело, по параметрам. Вот основные:

  • Максимальный прямой ток. Значение тока, который может протекать через анод-катод. У мощных моделей он может достигать сотен Ампер.
  • Максимально допустимый обратный ток. Указывается не для всех видов, только у обратно-проводящих.
  • Прямое напряжение. Это максимально допустимое падение напряжения в открытом состоянии при прохождении максимального тока.
  • Напряжение включения. Минимальный уровень управляющего сигнала, при котором тиристор сработает.

    Пример характеристик

  • Удерживающий ток. Если ток, протекающий через анод-катод ниже этого значения, устройство переходит в запертое состояние.
  • Минимальный ток управляющего сигнала. При подаче тока ниже этого значения, элемент не откроется.
  • Максимальный ток управления. Если превысить этот параметр, p-n переход выйдет из строя.
  • Рассеиваемая мощность. Определяет величину подключаемой нагрузки.

Есть еще динамический параметр — время перехода из закрытого в открытое состояние. В некоторых схемах это важно. Может еще указываться тип быстродействия: по времени отпирания или по времени запирания.

Электронная регулировка напряжения. Тиристорный регулятор мощности. Область использования тиристорных устройств

При разработке регулируемого источника питания без высокочастотного преобразователя разработчик сталкивается с такой проблемой, что при минимальном выходном напряжении и большом токе нагрузки на регулирующем элементе стабилизатор рассеивается большая мощность. До настоящего времени в большинстве случаев эту проблему решали так: делали несколько отводов у вторичной обмотки силового трансформатора и разбивали весь диапазон регулировки выходного напряжения на несколько поддиапазонов. Такой принцип использован во многих серийных источниках питания, например, УИП-2 и более современных. Понятно, что использование источника питания с несколькими поддиапазонами усложняется, усложняется также дистанционное управление таким источником питания, например, от ЭВМ.

Выходом мне показалось использование управляемого выпрямителя на тиристоре т. к. появляется возможность создания источника питания, управляемого одной ручкой установки выходного напряжения или одним управляющим сигналом с диапазоном регулировки выходного напряжения от нуля (или почти от нуля) до максимального значения. Такой источник питания можно будет изготовить из готовых деталей, имеющихся в продаже.

К настоящему моменту управляемые выпрямители с тиристорами описаны и весьма подробно в книгах по источникам питания, но практически в лабораторных источниках питания применяются редко. В любительских конструкциях они также редко встречаются (кроме, конечно, зарядных устройств для автомобильных аккумуляторов). Надеюсь, что настоящая работа поможет изменить это положение дел.

В принципе, описанные здесь схемы могут быть применены для стабилизации входного напряжения высокочастотного преобразователя, например, как это сделано в телевизорах “Электроника Ц432”. Приведенные здесь схемы могут также быть использованы для изготовления лабораторных источников питания или зарядных устройств.

Описание своих работ я привожу не в том порядке как я их проводил, а более или менее упорядочено. Сначала рассмотрим общие вопросы, затем “низковольтные” конструкции типа источников питания для транзисторных схем или зарядки аккумуляторов и затем “высоковольтные” выпрямители для питания схем на электронных лампах.

Работа тиристорного выпрямителя на емкостную нагрузку

В литературе описано большое количество тиристорных регуляторов мощности, работающих на переменном или пульсирующем токе с активной (например, лампы накаливания) или индуктивной (например, электродвигатель) нагрузкой. Нагрузкой же выпрямителя обычно является фильтр в котором для сглаживания пульсаций применяются конденсаторы, поэтому нагрузка выпрямителя может иметь емкостный характер.

Рассмотрим работу выпрямителя с тиристорным регулятором на резистивно-емкостную нагрузку. Схема подобного регулятора приведена на рис. 1.

Рис. 1.

Здесь для примера показан двухполупериодный выпрямитель со средней точкой, однако он может быть выполнен и по другой схеме, например, мостовой. Иногда тиристоры кроме регулирования напряжения на нагрузке U н выполняют также функцию выпрямительных элементов (вентилей), однако такой режим допускается не для всех тиристоров (тиристоры КУ202 с некоторыми литерами допускают работу в качестве вентилей). Для ясности изложения предположим, что тиристоры используются только для регулирования напряжения на нагрузке U н , а выпрямление производится другими приборами.

Принцип работы тиристорного регулятора напряжения поясняет рис. 2. На выходе выпрямителя (точка соединения катодов диодов на рис. 1) получаются импульсы напряжения (нижняя полуволна синусоиды “вывернута” вверх), обозначенные U выпр . Частота пульсаций f п на выходе двухполупериодного выпрямителя равна удвоенной частоте сети, т. е. 100 Hz при питании от сети 50 Hz . Схемауправления подает на управляющий электрод тиристора импульсы тока (или света если применен оптотиристор) с определенной задержкой t з относительно начала периода пульсаций, т. е. того момента, когда напряжение выпрямителя U выпр становится равным нулю.

Рис. 2.

Рисунок 2 выполнен для случая, когда задержка t з превышает половину периода пульсаций. В этом случае схема работает на падающем участке волны синусоиды. Чем больше задержка момента включения тиристора, тем меньше получится выпрямленное напряжение U н на нагрузке. Пульсации напряжения на нагрузке U н сглаживаются конденсатором фильтра C ф . Здесь и далее сделаны некоторые упрощения при рассмотрении работы схем: выходное сопротивление силового трансформатора считается равным нулю, падение напряжения на диодах выпрямителя не учитывается, не учитывается время включения тиристора. При этом получается что подзаряд емкости фильтра C ф происходит как бы мгновенно. В реальности после подачи запускающего импульса на управляющий электрод тиристора заряд конденсатора фильтра занимает некоторое время, которое, однако, обычно намного меньше периода пульсаций Т п.

Теперь представим, что задержка момента включения тиристора t з

Характеристики и схема включения тиристора КУ202Н

Тиристор КУ202Н принадлежит к группе триодных устройств со структурой p — n — p — n . Переходы созданы путем планарной-диффузии кремния. Тиристор предназначен для осуществления коммутации больших напряжений при помощи небольших уровней посредством дополнительного вывода. В зависимости от схемы включения он может открываться или закрываться, обеспечивая требуемые режимы работы устройства. Он применяется в системах блокировки, защиты, следящих приводах, дистанционно управляемых коммутационных системах, зарядных устройствах в качестве коммутатора или регулятора тока заряда.

Тиристор КУ 202Н купить можно еще во многих местах, потому что он является достаточно распространенным компонентом. Тем более его цена намного ниже, чем импортные аналоги. Также его можно найти во многих советских устройствах, начиная от блоков питания, заканчивая коммутационными приборами.

Конструкция

Конструктивно тиристор КУ202Н и вся серия выполнены в металлическом корпусе из медного сплава с покрытием, который имеет выводы под резьбу и два вывода под пайку различной толщины и высоты. Размер резьбового отвода или анода (А) составляет М6 под гайку. Выводы выполнены жесткими путем заливки эпоксидной смолой, но при выполнении монтажа не следует применять усилия более 0,98 Н.

При выполнении пайки силового вывода (К) необходимо соблюдать минимальное расстояние до стекла не менее 7 мм , так как высокой температурой его целостность может нарушиться. При выполнении подключения управляющего вывода (УЭ) следует выдержать расстояние до стекла не менее 3,5 мм по той же причине. При этом общее время удерживания паяльника не рекомендуется превышать более 3 с. Эффективная температура жала паяльного инструмента не должна превышать +260 градусов.

Особенности схемного подключения

Тиристор предназначен для коммутации напряжения в различных устройствах. Но при этом имеется стандартная схема его подключения, которую нарушать крайне не рекомендуется. Например, между катодом (вывод под пайку) и управляющим электродом необходимо подключить резистор в качестве шунтирующего компонента. Благодаря его присутствию управляющая цепь замыкается и обеспечивается насыщение перехода. Его сопротивление должно быть не более и не менее 51 Ом.

Если на аноде присутствует напряжение отрицательной полярности, то управляющий ток должен быть равен нулю. Иначе произойдет электрический пробой перехода, что приведет к неисправности всего устройства в целом. Дальнейшая его работа невозможна, как и обратное восстановление.

Технические параметры тиристора

Тиристор КУ202Н относится к группе высоковольтных устройств, предназначенных для работы при напряжении до 400 В с максимально допустимым прямым током в открытом состоянии не более 10 А. Всего в линейке имеется 12 моделей тиристоров с различными напряжениями в закрытом состоянии. Поэтому при выборе основным параметром является именно оно.

Для использования в цепях с напряжением от 300 и выше вольт предназначены тиристоры с буквенными обозначениями от К до Н. Что касается остальных параметров, то они остаются теми же. Довольно часто новички радиолюбители сталкиваются с такими проблемами, что приводит к дополнительным растратам.

Эти тиристоры довольно часто применяются в построении регуляторов мощности нагрузкой не более 2 кВт. Но крайне не рекомендуется его эксплуатировать в критических режимах. Следует пропускать через устройство ток не более 7-8 А, что будет обеспечивать наиболее эффективные и щадящие режимы.

Проверка тиристора

Многих интересует, тиристор КУ202Н как проверить и как правильно включить в устройстве для проверки его работоспособности. Дело в том, что довольно часто он оказывается неисправен по различным причинам. Притом дефекты встречаются и у новых изделий.

Проверить тиристор можно несколькими способами:

  • Использовать специальное устройство, которое анализирует параметры всех переходов.
  • Применить мегомметр для проверки состояния основного перехода в обоих направлениях. В обратном направлении должен прозваниваться как обычный диод, в прямом включении он закрыт, в идеальном состоянии его сопротивление должно быть равно бесконечности.

Второй способ применим только к серии устройств с буквенным индексом М и Н. При этом можно устанавливать напряжение прозвонки до 400 В. Устройства с буквами К и Л только до 300 В, Ж и И – до 200 В и так далее. Прежде чем проверять таким способом изделие, необходимо сверить его технические характеристики со справочной таблицей. Иначе можно повредить устройство, даже не использовав его по назначению.

Менее мощные тиристоры могут быть проверены обычным мультиметром в режиме прозвонки (значок диода и звукового сигнала). В обратном направлении он звонится как диод, в прямом – бесконечность.

Важно! При осуществлении проверки тиристора в режиме диода, необходимо УЭ объединить с А.

Проверка в режиме коммутации

Чтобы убедиться в работоспособности тиристора, достаточно собрать небольшую схему включения, состоящую из следующих компонентов:

  1. лампочки или светодиода с соответствующим резистором, если подключается к питанию 12В;
  2. источник малого напряжения, например, пальчиковая батарейка типа АА;
  3. несколько проводников и источник напряжения 12 В.

Для осуществления проверки выполняем следующие шаги:

  1. Подключаем нагрузку в цепь источник питания 12 В и А-К тиристора.
  2. Подаем отрицательное напряжение на выводы УЭ и А (+ батарейки должен подключаться к А) на мгновенье.

После чего лампочка или светодиод загорится. Чтобы он потух, необходимо отключить коммутируемую цепь или сменить полярность управляющего напряжения. Такой режим считается нормальным для работы и может применяться при любых постоянных напряжениях коммутации в разрешенных пределах. В случае с тиристором КУ202Н оно не должно превышать 400 В.

Аналоги КУ202Н

Как и любые другие устройства, отечественный тиристор КУ202 имеет зарубежный аналог, который по своим параметрам относится к той же категории компонентов. Зарубежные производители давно ушли от производства такого форм-фактора по мощности тиристоров в металлическом корпусе. На рынке будут доступны только элементы в корпусе транзистора ТО220. Поэтому в любом случае придется внести конструктивные изменения в плату и монтажное место в частности.

К зарубежным аналогам тиристора КУ202Н относятся устройства:

Параметры незначительно отличаются от вышеописанного компонента, и средний ток в том числе, равен 7,5 А. Также можно применить в схемах более новый российский элемент Т112-10. Он имеет также металлический корпус с резьбовым отводом, но его размеры будут несколько меньше.

Простые схемы управления КУ202Н

На тиристор КУ202Н схема управления достаточно простая. Первый вариант был описан в разделе проверки устройства. Она включала батарейку на 1,5 В, лампочку и источник питания 12 В. Но также существует масса других способов элементарного подключения тиристора. Рассмотрим самую простую схему на его базе.

Регулятор мощности

В схеме реализован принцип частотно-импульсного регулирования угла отпирания тиристоров за счет синхронизации с сетью. Такое управление является наиболее эффективным и надежным, так как тиристор работает в нормальных режимах без завышения своих возможностей.

В схеме имеется генератор, который формирует импульсы управления и сдвигает их относительно фронтов импульсов при переходе сетевого напряжения через ноль. Управляющая последовательность импульсов подается на УЭ и К. Напряжение в нагрузке выпрямляется при помощи двухполупериодного выпрямителя. Использование емкостей в схеме в качестве фильтров недопустимо, так как они будут нарушать главный принцип работы устройства. Такой регулятор мощности можно применить для управления температурой жала паяльника путем изменения напряжения его питания. Но если потребуется организоваться управления первичными цепями трансформатора, придется включить нагрузку перед диодным мостом. Ток регулирования должен быть не более 7,5 А.

Тиристорная коммутация с использованием демпфирующей цепи

Демпферные цепи — это цепи поглощения энергии, используемые для сглаживания скачков напряжения, вызванных индуктивностью цепи. Иногда из-за перегрузки по току, перенапряжения и перегрева компонент выходит из строя. Итак, для максимальной токовой защиты цепи мы используем предохранители в подходящих местах, а для перегрева мы используем радиаторы или вентиляторы.

Демпферные цепи используются для ограничения скорости изменения напряжения или тока (di / dt или dv / dt) и перенапряжения во время включения и выключения цепи.Демпферная цепь — это комбинация резисторов и конденсаторов, соединенных последовательно через переключатель, например, транзистор или тиристор, для защиты, а также для повышения производительности. В переключателях и реле также используются демпфирующие цепи для предотвращения дугового разряда.

В этом проекте мы покажем вам , как демпферная цепь защищает тиристор от перенапряжения или перегрузки по току. Схема состоит из демпфирующей цепи на тиристоре и схемы генератора частоты с использованием микросхемы таймера 555.

Необходимые материалы

  • Тиристор-TYN612 (SCR)
  • 555 таймер IC
  • Резистор (47к-2,10к-2,1к-1,150-1)
  • Конденсатор (0,01 мкФ, 0,001 мкФ, 0,1 мкФ-2)
  • Диод-1Н4007
  • Переключатель
  • Осциллограф (для подтверждения вывода)
  • Питание 9В
  • Соединительные провода

Принципиальная схема

Часть 2 этой схемы используется для получения характеристики переключения тиристора со схемой демпфера.

Тиристор — TYN612

Здесь в названии тиристора TYN612 цифра «6» указывает значение повторяющегося пикового напряжения в закрытом состоянии, V DRM и V RRM составляет 600 В, а «12» указывает значение RMS в открытом состоянии. ток I T (RMS) составляет 12 A. Тиристор TYN612 подходит для всех режимов управления, таких как защита от перенапряжения, цепи управления двигателем, цепи ограничения пускового тока, цепи зажигания емкостного разряда и цепи регулирования напряжения.Диапазон срабатывающего тока затвора (I GT ) составляет от 5 мА до 15 мА. Диапазон рабочих температур от -40 до 125 ° C. Узнайте больше о тиристоре здесь.

Распиновка тиристора TYN612

Конфигурация выводов тиристора TYN612

Контакт NO.

Имя контакта

Описание

1

К

Катод тиристора

2

А

Анод тиристора

3

G

Затвор тиристора, используется для запуска

Расчет демпфирующей цепи

Как известно, демпферная цепь представляет собой комбинацию резистора и конденсатора.Конденсатор, используемый в демпфирующей цепи, способен предотвратить нежелательное срабатывание dv / dt тиристора или тиристора. Когда напряжение прикладывается к цепи, внезапное напряжение появляется на переключающем устройстве. Конденсатор Cs ведет себя как короткое замыкание, что приводит к нулевому напряжению на тиристоре. По мере того, как время идет, напряжение на конденсаторе Cs растет с медленной скоростью. Таким образом, значение dv / dt на конденсаторе C2 и тиристоре становится меньше, чем максимальное значение du / dt устройства.

Теперь вопрос в том, какая польза от сопротивления R S ? Когда SCR включен, конденсатор разряжается через SCR и посылает ток, равный Vs / R S . Поскольку сопротивление очень НИЗКОЕ, di / dt будет иметь тенденцию быть достаточно высоким, что может повредить SCR. Так, для ограничения величины разрядного тока используется сопротивление R S .

Работа демпферной цепи

Схема разделена на две части.Первый используется в качестве схемы генератора частоты с использованием микросхемы таймера 555, выход которой используется для питания клеммы затвора тиристора. Вторая часть схемы используется для проверки переключения тиристора или тринистора со схемой демпфера и без цепи демпфера.

Вариант I: без демпферной цепи

Когда цепь демпфера отсутствует на тиристоре, как показано на схеме выше, возникают всплески высокого напряжения, как вы можете видеть на форме волны ниже.Поэтому для сглаживания скачков напряжения мы используем демпфирующую цепь, которая предотвращает повреждение устройства из-за перенапряжения или ложного срабатывания dv / dt.

Вариант II: со схемой демпфера

Когда цепь демпфера присутствует на тиристоре, она уменьшает или сглаживает скачки напряжения, как показано на диаграмме ниже. Следовательно, устройство не будет повреждено из-за перенапряжения, а также снижает значение du / dt устройства, чем максимальное значение.

Что такое DIAC — Схемы применения »Электроника

DIAC — это двунаправленный полупроводниковый переключатель, который может быть включен как в прямой, так и в обратной полярности выше определенного напряжения: он часто используется для обеспечения определенного переключения для симистора.


Triac, Diac, SCR Учебное пособие Включает:
Основы тиристоров Конструкция тиристорного устройства Работа тиристора Затвор отключающий тиристор, ГТО Характеристики тиристора Что такое симистор Технические характеристики симистора Обзор Diac


DIAC — это двухполупериодный или двунаправленный полупроводниковый переключатель, который можно включать как в прямой, так и в обратной полярности.

Название DIAC происходит от слов DI ode AC switch. DIAC — это электронный компонент, который широко используется для помощи даже в срабатывании TRIAC при использовании в переключателях переменного тока, и в результате они часто встречаются в диммерах, таких как те, которые используются в домашнем освещении. Эти электронные компоненты также широко используются в цепях стартера люминесцентных ламп.

Хотя этот термин встречается нечасто, DIAC также можно назвать симметричными триггерными диодами — термин, обусловленный симметрией их характеристической кривой.

DIAC бывают разных форматов. В качестве отдельных компонентов они могут содержаться в небольших корпусах с выводами, их можно получить в корпусах для поверхностного монтажа, в больших корпусах, которые крепятся болтами к шасси, или во множестве других корпусов. Поскольку они часто используются как комбинация DIAC TRIAC, они часто интегрируются в тот же кристалл, что и TRIAC.

Символ DIAC

Символ DIAC, используемый для изображения этого электронного компонента на принципиальных схемах, можно запомнить как комбинацию двух диодов, параллельных друг другу, но соединенных в противоположных направлениях.

Обозначение схемы ЦИАП

Из-за того, что ЦИАП являются двунаправленными устройствами, выводы нельзя обозначать как анод и катод, как для диода. Вместо этого они могут быть помечены как A1 и A2 или MT1 и MT2, где MT означает «Главный терминал».

Работа DIAC

В схемах

DIAC используется тот факт, что DIAC проводит ток только после превышения определенного напряжения пробоя. Фактическое напряжение пробоя будет зависеть от технических характеристик конкретного типа компонента.

Когда возникает напряжение пробоя DIAC, сопротивление компонента резко уменьшается, что приводит к резкому уменьшению падения напряжения на DIAC и соответствующему увеличению тока. DIAC будет оставаться в проводящем состоянии до тех пор, пока ток, протекающий через него, не упадет ниже определенного значения, известного как ток удержания. Когда ток падает ниже тока удержания, DIAC переключается обратно в свое высокое сопротивление или непроводящее состояние.

Вольт-амперная характеристика DIAC

DIAC широко используются в приложениях переменного тока, и было обнаружено, что устройство «сбрасывается» в непроводящее состояние каждый раз, когда напряжение в цикле падает так, что ток падает ниже тока удержания.Поскольку поведение устройства примерно одинаково в обоих направлениях, оно может обеспечить способ обеспечения равного переключения для обеих половин цикла переменного тока, например для TRIAC.

Большинство DIAC имеют напряжение пробоя около 30 вольт, хотя точные характеристики будут зависеть от конкретного типа устройства. Интересно, что их поведение несколько похоже на поведение неоновой лампы, хотя они предлагают гораздо более точное переключение напряжения и тем самым обеспечивают гораздо лучшую степень выравнивания переключения.

Структура Diac

DIAC может быть как двухслойной, так и пятислойной. В трехслойной структуре переключение происходит, когда переход с обратным смещением испытывает обратный пробой. Трехслойная версия устройства является более распространенной и может иметь напряжение отключения около 30 В. Работа почти симметрична из-за симметрии устройства.

Также доступна пятиуровневая структура DIAC. Это не действует точно так же, хотя создает кривую I-V, которая очень похожа на трехслойную версию.Его можно рассматривать как два переключающих диода, соединенных спина к спине.

Структура DIAC

Для большинства приложений используется трехуровневая версия DIAC. Это обеспечивает значительное улучшение коммутационных характеристик. Для некоторых приложений может использоваться пятиуровневое устройство.

Приложения DIAC

Одно из основных применений DIAC в схемах TRIAC. TRIAC не срабатывают симметрично из-за небольших различий между двумя половинами устройства.

Несимметричное срабатывание и результирующие формы волны вызывают генерацию нежелательных гармоник — чем менее симметрична форма волны, тем выше уровень генерации гармоник.

Комбинация DIAC TRIAC

Для решения проблем, возникающих из-за несимметричной работы, DIAC часто размещается последовательно с затвором. Это устройство помогает сделать переключение более равномерным для обеих половин цикла. Это происходит из-за того, что характеристика переключения DIAC намного более ровная, чем у TRIAC.

Поскольку DIAC предотвращает протекание тока затвора до тех пор, пока напряжение триггера не достигнет определенного напряжения в любом направлении, это делает точку срабатывания TRIAC более равномерной в обоих направлениях. Ввиду их полезности DIAC часто могут быть встроены в терминал затвора TRIAC.

DIAC — широко используемый электронный компонент. Основное применение DIAC — использование вместе с TRIAC для выравнивания их коммутационных характеристик. Путем выравнивания характеристик переключения этих TRIAC можно уменьшить уровень гармоник, генерируемых при переключении сигналов переменного тока.Несмотря на это, для больших приложений обычно используются два тиристора. Тем не менее, комбинация DIAC / TRIAC очень полезна для приложений с низким энергопотреблением, включая регуляторы освещенности и т. Д.

Другие электронные компоненты: Резисторы
Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор FET Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

SCR в цепях переменного тока

  • Изучив этот раздел, вы должны уметь:
  • Описать методы управления мощностью переменного тока с использованием тиристоров
  • • Полуволновое и полноволновое управление
  • • Базовое резистивное управление.
  • • Фазовое управление.
  • • Контроль уровня.
  • • Импульсный запуск.
  • • Синхронное переключение или переключение через ноль.
  • Понимать работу схемы для различных методов запуска SCR.
  • Описать методы безопасной изоляции устройств среднего и высокого напряжения.

Базовый резистивный контроль

Тиристоры обычно используются в цепях управления питанием переменного тока, таких как диммеры освещения, регуляторы скорости двигателя переменного тока, нагреватели и т. Д.где сетевые (линейные) напряжения используются для нагрузок в много ватт или часто киловатт. Целью управления переменным током является запуск SCR на части в течение каждого цикла переменного тока, чтобы ток нагрузки через SCR отключался на часть цикла переменного тока, таким образом ограничивая средний ток, протекающий через SCR, и, следовательно, среднюю передаваемую мощность к нагрузке.

Рис. 6.2.1 Базовая схема резистивного управления

Самый простой способ достижения этого проиллюстрирован на рис. 6.2.1, где тиристор включается подачей синусоидальной волны низкого напряжения (полученной от входа переменного тока простой резисторной цепью, содержащей переменный потенциометр) на вывод затвора SCR.Обратите внимание, что поскольку входная волна затвора получается из переменного тока, протекающего через SCR, она будет состоять только из выпрямленных полуволновых импульсов. Эффект этой входной волны заключается в том, что SCR будет включаться только тогда, когда форма волны затвора достигает потенциала срабатывания SCR, что происходит на половине каждого положительного полупериода волны переменного тока. После включения тиристора он продолжает проводить до тех пор, пока волна переменного тока не упадет до чуть выше нуля вольт, когда ток, протекающий между анодом и катодом, упадет до значения, меньшего, чем пороговое значение « тока удержания » (показано в тиристорном модуле 6.0 рис. 6.0.3). Затем тиристор остается в непроводящем состоянии в течение отрицательного полупериода волны переменного тока, поскольку теперь он смещен в обратном направлении (в режиме обратной блокировки) в течение оставшейся части цикла переменного тока. Когда начинается следующий положительный полупериод, тиристор остается в непроводящем состоянии до тех пор, пока сигнал запуска на выводе затвора не достигнет своего пускового потенциала еще раз.

Рис. 6.2.2 Активное срабатывание SCR

Время или фазовый угол, при котором срабатывает SCR, можно изменять, изменяя амплитуду сигнала затвора.Как видно из анимации на рис. 6.2.2. чем меньше амплитуда стробирующего сигнала, тем позже включается тиристор. Таким образом, изменение амплитуды сигнала триггера регулирует время включения SCR. Однако обратите внимание, что, поскольку тиристор в основном представляет собой выпрямительный диод, он проводит только половину цикла переменного тока, поэтому один тиристор может обеспечить только 50% доступной мощности переменного тока. Кроме того, при использовании этой очень простой формы управления током, протекающим через тиристор, можно управлять только в течение половины положительного полупериода, то есть четверти полного цикла переменного тока.Видно, что как только время включения достигает пика амплитуды волны переменного тока, его нельзя регулировать дальше, так как пиковая амплитуда сигнала запуска больше не будет достигать потенциала срабатывания затвора SCR и поэтому не будет запускать SCR после эта точка.

Рис. 6.2.3 Управление переменным током с помощью резисторов

Рис. 6.2.3 Видео недоступно в формате для печати

Из анимации и видео на рис. 6.2.3 также видно, что при использовании простого резистивного метода управление не очень линейное; Первоначально ток через SCR изменяется только на относительно небольшую величину, но есть более быстрое изменение непосредственно перед прекращением проводимости.Внимательно посмотрите на вставку с изображением лампы на видео; он начинает заметно тускнеть только тогда, когда время переключения приближается к пиковому значению волны переменного тока.

Рис. 6.2.4 Методы управления полноволновым SCR

Полноволновой регулятор SCR

Базовая операция SCR, описанная выше, может быть значительно улучшена с помощью некоторых простых модификаций. Возможно, самым большим недостатком простого резистивного управления является то, что диапазон регулировки может покрывать только 25% всей волны переменного тока.Это происходит из-за того, что диод SCR проводит только во время положительной половины волны переменного тока. Чтобы обеспечить проводимость во время прохождения отрицательной половины волны переменного тока, переменный ток можно выпрямить с помощью двухполупериодного выпрямителя, как показано на рис. 6.2.4 (a). Поскольку обе половины волны переменного тока теперь будут положительными, диапазон регулировки теперь увеличен почти до 50%. Альтернативой является использование второго SCR, соединенного встречно-параллельно, как показано на рис. 6.2.4 (b), чтобы один SCR работал во время положительных полупериодов, а другой SCR — во время отрицательных полупериодов.Однако такое параллельное расположение тиристоров также можно получить, просто используя один симистор вместо двух тиристоров.

Рис. 6.2.5 Демонстрационная схема управления фазой SCR

Управление фазой SCR

Для достижения практически 100% -ного контроля волны переменного тока при регулировке фазы просто заменяется один из резисторов в резистивной цепи управления на конденсатор. Теперь это преобразует цепь резисторов в переменный фильтр нижних частот, который будет сдвигать фазу волны переменного тока, подаваемой на затвор.Подробности о том, как работает фильтр нижних частот, можно найти здесь, но в основном значения C и R выбраны таким образом, чтобы регулировка R1 обеспечивала сдвиг фазы от 0 ° до почти 90 °. Чтобы быть эффективным, изменение R1 должно приводить к значительным изменениям в поведении нагрузочного устройства (в данном случае лампы на 12 В, 100 мА). Однако, помимо сдвига фазы сигнала затвора, RC-фильтр также будет изменять амплитуду формы сигнала затвора, поэтому амплитуда сигнала затвора также должна поддерживаться выше пускового потенциала выбранного типа SCR для переключения иметь место.Из этих условий видно, что расчет подходящих значений для R и C для обеспечения надлежащего управления зависит как от фазы, так и от амплитуды, поэтому может быть довольно сложным. Поэтому, скорее всего, также потребуются некоторые практические эксперименты со значениями R и C.

Рис. 6.2.6 Управление фазой SCR

Рис. 6.2.6 Видео недоступно в формате для печати

Видео на рис. 6.2.6 показывает работающую схему с использованием значений компонентов, показанных на рис.6.2.5. Наблюдая за яркостью лампы вместе с изменяющейся формой сигнала, показанной на вставленном изображении, можно увидеть, что использование фазового управления действительно дает значительно лучший контроль почти над всеми 180 ° каждого полупериода по сравнению с простым резистивным управлением.

Контроль уровня SCR

Рис. 6.2.7 Контроль уровня SCR

Другой способ включения тиристора в соответствующую часть цикла переменного тока — подать напряжение постоянного тока на затвор в течение времени, которое требуется для проведения тиристора.Следовательно, постоянный ток, приложенный к затвору, будет импульсом переменной ширины, имеющим уровень напряжения, достаточный для того, чтобы заставить тиристор проводить. Эти импульсы должны быть синхронизированы с выпрямленной волной переменного тока, чтобы они всегда начинались и заканчивались в правильное время относительно формы волны переменного тока.

Анимация на рис. 6.2.7 иллюстрирует основной метод запуска SCR с использованием управления уровнем. SCR запускается (включается) в течение каждого полупериода выпрямленного переменного тока напряжением V g , приложенным к затвору SCR.SCR отключается в конце каждого полупериода, когда напряжение на SCR падает почти до нуля, что также совпадает с окончанием триггерного импульса V g . Импульсы постоянного тока могут генерироваться в цифровом виде, с использованием выхода компьютера или дискретной компонентной схемы, такой как показанная ниже на рис. 6.2.8, в которой используется моностабильный таймер 555. Эта схема предлагает простой и недорогой метод демонстрации работы тринистора с использованием только низких напряжений. Используются два блока питания, заштрихованная область на рис.6.2.8 — это демонстрационный источник питания переменного тока, описанный в модуле SCR 6.0, который изолирует демонстрационную схему от сети (линии). На секцию управления цепи должно подаваться постоянное напряжение от 5 В до 12 В. Это может быть либо отдельный источник питания постоянного тока (например, «настенная бородавка»), либо специальный регулируемый источник питания IC, либо батарея. Секция управления схемы (черная) также изолирована от секции переменного тока (красная) двумя оптопарами, IC1 и IC3. Поскольку эта цепь уже изолирована от сетевого напряжения с помощью T1, казалось бы, нет необходимости использовать второй метод изоляции в IC1, однако основная функция IC1 в данном случае не изоляция, а действие как детектор перехода через нуль.

Рис. 6.2.8 Цепь запуска уровня SCR

Рис. 6.2.9 Формы сигналов запуска уровня SCR

Демонстрационная схема запуска уровня

Схема на рис. 6.2.8 включает тиристор в момент времени, выбранный настройкой VR1, в течение каждого положительного полупериода переменного тока от низковольтного источника питания (форма сигнала A). SCR снова отключается, когда выпрямленное переменное напряжение падает почти до нуля в конце каждого полупериода. Схема управления основана на микросхеме таймера 555, работающей в моностабильном режиме, и двух оптопарах 4N25.

Помимо изоляции схемы 555 от входящего переменного тока, IC1 (4N25) обеспечивает синхронизирующий импульс (форма сигнала B на рис. 6.2.9). Это достигается за счет смещения IC1 в режиме общего коллектора, так что его выходной транзистор проводит большую часть входного двухполупериодного переменного тока, создавая высокое (5 В) напряжение на выводе 4, но выключается, когда волна переменного тока приближается к 0 В, создавая выход 0 В. на выводе 4 микросхемы IC1. Эти импульсы используются для запуска моностабильного модуля 555 (IC2) в начале каждого полупериода.

Каждый раз, когда срабатывает IC2, его выход на выводе 3 становится высоким в течение времени, установленного постоянной времени, создаваемой переменным резистором VR1 и конденсатором синхронизации C1.Обратите внимание, что VR1 также подключен параллельно резистору R4 на 27 кОм. Целью этого является достижение более точной постоянной времени, чем это возможно при использовании только предпочтительных значений VR1 и C1. Также можно было бы установить предварительно установленный резистор вместо R4 для получения точной длительности запускающего импульса высокого уровня, создаваемого IC2.

Рис. 6.2.10 Запуск уровня SCR

Рис. 6.2.10 Видео недоступно в формате для печати

Обратите внимание, что запускающий импульс, создаваемый IC2 (форма сигнала C на рис.6.2.9) переходит в высокий уровень сразу после получения синхронизирующего импульса, который включит SCR в начале полупериода. Кроме того, когда импульс запуска возвращается на низкий уровень, это не отключит SCR, он будет продолжать работать до конца полупериода; это не то, что нужно. Однако форма сигнала C инвертируется под действием оптрона IC3, поскольку его выходной транзистор подключен в режиме общего эмиттера. Следовательно, SCR срабатывает во время последнего периода полупериода выпрямленного переменного тока (форма сигнала D на рис.6.2.9). Обратите внимание на то, что форма волны D не похожа на обратную форму волны C, потому что, как только SCR запускается, вход затвора (вместе с анодом и катодом) следует форме выпрямленной волны переменного тока с момента запуска до момента, когда он достигает 0 В.

Обратите внимание, что схема запуска уровня, описанная здесь и показанная в действии на видео на рис. 6.2.10, не предназначена конкретно для представления практической схемы для управления высоким напряжением, а как демонстрационный образец, позволяющий изучить управление SCR. .Таким образом, этот модуль дает возможность более глубоко изучить режимы запуска SCR, используя низковольтный источник питания переменного тока, описанный в модуле SCR 6.0, и создавая схемы запуска на макетной плате. Однако на практике есть некоторые недостатки срабатывания по уровню, которые можно преодолеть с помощью импульсного запуска.

Запуск импульса SCR

Использование запуска по уровню, как описано выше, имеет недостаток, заключающийся в создании тока затвора в течение всего периода включения SCR.Это создает ненужный ток затвора и в приложениях с высокой мощностью может увеличить тепло, выделяемое на переходе 2 SCR, что, в свою очередь, может снизить долговременную надежность.

Модификация схемы, показанной на рис. 6.2.8, проиллюстрирована на рис. 6.2.11. Эта схема генерирует одиночный узкий импульс (длительностью около 4 мкс) для запуска SCR при выбранном угле включения, затем SCR продолжает проводить до тех пор, пока прямой ток не упадет до значения, меньшего, чем значение удерживающего тока около 0 В, что значительно снижает среднее значение затвора. текущий.

Рис. 6.2.11 Цепь запуска импульса SCR

Как работает цепь запуска импульса

Часть рис. 6.2.11, показанная бледно-серым цветом, работает так же, как уже было описано для рис. 6.2.8; Выход IC2 (моностабильный) состоит из положительных импульсов переменной ширины (форма сигнала A, показанная на рис. 6.2.12), где задний фронт каждого импульса определяет угол включения SCR. (Обратите внимание, что в схеме запуска уровня этот сигнал инвертируется перед подачей на затвор, так что задний фронт становится нарастающим фронтом для запуска SCR).На рис. 6.2.11 перед тем, как выходной сигнал IC2 будет инвертирован, он дифференцируется C3 и R5 для создания серии узких 4 мкс положительных и отрицательных импульсов, соответствующих нарастающим и спадающим фронтам сигнала A. Эти узкие импульсы подаются на общий коллектор (эмиттерный повторитель) задающего транзистора Tr1 через R6. Диод D2 на эмиттере Tr1 удаляет положительные импульсы (за исключением небольшого остатка из-за потенциала прямого перехода диода).

Рис. 6.2.12 Формы сигналов запуска импульса SCR

Отрицательные импульсы (форма волны B) на эмиттере Tr1 инвертируются импульсным трансформатором 1: 1 T2 путем соединения вторичной обмотки T2 в противофазе с первичной обмоткой T2 (обратите внимание на точки индикатора фазы рядом с первичной и вторичной обмотками), таким образом создавая положительные триггерные импульсы для SCR.Т2 также действует как изолятор между цепью управления постоянного тока низкого напряжения и тиристором переменного тока высокого напряжения. На рис. 6.2.12 форма волны C показывает форму волны катода SCR, причем быстрый нарастающий фронт соответствует времени запуска импульса, подаваемого на затвор через токоограничивающий резистор R8; это снижает ток, подаваемый каждым импульсом запуска, примерно до 100 мкА.

Цепи запуска по уровню и импульсного запуска обеспечивают надежный запуск и настройку почти на всех 360 ° волны переменного тока 50 Гц.Для работы 60 Гц может потребоваться некоторая регулировка постоянной времени моностабильности. Уровень напряжения питания постоянного тока не является критическим, от 5 до 12 В.

Рис. 6.2.13 Сигналы пересечения нуля SCR

Синхронное переключение (переход через нуль)

Однако существует проблема со всеми описанными выше методами управления. Форма выходного сигнала переменного тока, когда SCR включается в течение каждого положительного полупериода волны переменного тока, имеет очень быстрое время нарастания, поскольку ток через SCR внезапно переключается с нуля на мгновенное значение волны переменного тока.При использовании источника переменного тока 230 В это резкое изменение может составлять около 325 В (пиковое значение волны переменного тока). Форма волны также может быть острым треугольным всплеском, если SCR включается после достижения пикового значения волны. В любом случае форма волны переменного напряжения, создаваемая действием SCR, будет богата гармониками, которые могут вызвать серьезный уровень электромагнитных помех (ЭМИ), вызывая проблемы не только для других подключенных схем; Помехи также могут излучаться на другие расположенные поблизости электронные устройства в виде радиочастотных помех (r.f.i.), поскольку создаваемые гармоники могут распространяться в радиодиапазоны. Чтобы избежать этих проблем, можно использовать альтернативные методы контроля. Один из таких методов, называемый «синхронное переключение или переключение с переходом через нуль», заключается в том, чтобы разрешить тиристорам переключаться только тогда, когда форма напряжения сети равна нулю или очень близка к нему. Затем тиристор включается на некоторое количество циклов, а затем снова выключается (когда напряжение переменного тока проходит через 0 В) еще на количество циклов. Затем соотношение циклов включения и выключения может быть изменено, чтобы обеспечить изменение средней мощности, подаваемой на нагрузку.Рис. 6.2.13 иллюстрирует теоретический метод достижения нулевого переключения кроссовера. Практическая демонстрационная схема показана на рис. 6.2.14, а фактические формы сигналов, полученные из схемы, показаны на рис. 6.2.15.

Форма сигнала A на рис. 6.2.15 показывает форму сигнала 18Vpp, 100 Гц, приложенную к цепи перехода через нуль от двухполупериодного выпрямленного источника питания переменного тока и мостового выпрямителя (заштриховано серым на рис. 6.2.14).

Форма волны B представляет собой серию импульсов 5 В, полученных от оптопары IC1.Поскольку транзистор оптопары включен в течение большей части положительного полупериода входа переменного тока, это делает эмиттер высоким, за исключением узкого импульса, когда эмиттер падает с 5 В до 0 В каждый раз, когда вход переменного тока падает до 0 В. Таким образом, эти импульсы синхронизируются с точкой нулевого напряжения формы сигнала A.

Однако, поскольку для запуска SCR необходимы положительные импульсы запуска, импульсы в точке B инвертируются Tr1 для создания формы сигнала C.

Форма сигнала D является выходным сигналом автономного нестабильного генератора 555 IC2, который генерирует прямоугольные импульсы с частотой повторения импульсов около 7 Гц и регулируемым рабочим циклом, регулируемым VR1.Эта форма сигнала используется для управления соотношением времени включения и выключения SCR. Поскольку SCR будет высоким (включен) в течение нескольких полупериодов 100 Гц, затем низким (выключенным) в течение нескольких полупериодов. Отношение метки к пространству прямоугольной волны, создаваемой IC2, регулируется VR1, чтобы обеспечить время включения примерно от 20% до 90% от периодического времени нестабильного выхода. Более подробно работа IC2 описана в Модуле 4.4 генераторов.

Выходы Tr1 (форма сигнала C) и IC2 (форма сигнала D) подаются на два входа логического элемента И (IC3).Выход IC3 переходит в логическую 1 только тогда, когда оба входа находятся на логической 1. Это создает серию узких положительных импульсов запуска (форма сигнала E) для запуска SCR только в начале этих полупериодов, когда форма сигнала D имеет высокий уровень. Создаваемые импульсы запуска подаются на Т2, изолирующий импульсный трансформатор 1: 1, через транзистор Tr2 драйвера эмиттерного повторителя. Вторичная обмотка Т2 подает триггерные импульсы на затвор тринистора через резистор ограничителя тока R11 и диод D3. Форма волны затвора (форма волны F) практически идентична форме волны выходного сигнала на катоде SCR, поскольку между затвором и катодом SCR существует лишь небольшая разница в напряжении.

Рис. 6.2.14 Цепь управления переходом через ноль SCR

* Примечание по безопасности: Как правило, резисторы 0,25 Вт подходят для этой конструкции, но если схема работает в течение длительного времени без источника переменного тока, но при этом источник постоянного тока все еще включен, существует вероятность того, что R11 (47R 0,25 Вт) может перегреться. , поскольку в этих условиях он будет пропускать повышенный ток из-за сигнала E, являющегося версией нестабильного выхода с более высоким током (форма сигнала D). Чтобы избежать перегрева, R5 можно заменить версией с более высокой мощностью, или, предпочтительно, всегда должны быть отключены источники переменного и постоянного тока, когда цепь не работает!

Фиг.6.2.15 Формы сигналов Рис. 6.2.14 Схема

Рис. 6.2.16 SCR Zero Crossing
Схема макетной платы

Работа цепи перехода через нуль SCR

В этой демонстрационной схеме снова используется двухполупериодный выпрямленный источник переменного тока низкого напряжения (12 В RMS ), описанный ранее и затененный серым цветом на рис. 6.2.14.

Рис. 6.2.14. использует два различных метода изоляции и демонстрирует, как можно достичь метода контроля перехода через нуль с использованием стандартных компонентов.Он не предназначен для представления какого-либо конкретного коммерчески доступного решения и не предназначен для представления наилучшего доступного метода. Целью схем управления затвором SCR, обсуждаемых в этом модуле, является предоставление полезных демонстраций широко используемых методов управления и среды низкого напряжения для соответствующих экспериментов. Они могут быть построены недорого на стандартном макете или на плате, как показано на рис. 6.2.16, в качестве полезных демонстраций или студенческих проектов. В этих проектах используются низкие напряжения, чтобы поддерживать более безопасную окружающую среду, но узнайте больше об электронике.org не заявляет и не предполагает, что любая электронная схема является полностью безопасной, выбор построения и / или использования схем и методов, описанных на этом сайте, осуществляется исключительно на ваш страх и риск.

Видео на рис. 6.2.17 показывает эффект управления переходом через ноль при использовании для уменьшения яркости лампы. Обратите внимание на выраженное мерцание, возникающее при включении и выключении SCR на низких частотах, показывая, что это решение, устраняя одну проблему управления SCR (помехи), создает другую — низкую скорость переключения и связанное с этим мерцание.Однако, хотя это может быть проблемой для приложений освещения, это не проблема для приложений с медленно меняющимися значениями, такими как управление нагревом. Таким образом, переход через нуль может быть эффективным для контроля температуры путем изменения средней мощности, подаваемой на нагревательный элемент. Кроме того, из-за отсутствия быстро изменяющихся скачков напряжения при управлении переходом через нуль, он больше подходит для использования с индуктивными нагрузками, чем схемы управления, которые переключаются во время цикла переменного тока.

Фиг.6.2.17 SCR Zero Crossing Control

Рис. 6.2.17 Видео недоступно
в формате для печати

Классификация методов коммутации тиристоров

В большинстве преобразователей и импульсных источников питания используются компоненты силовой электроники, такие как тиристоры, полевые МОП-транзисторы и другие силовые полупроводниковые устройства, для высокочастотных операций переключения при высоких номинальных мощностях. Рассмотрим тиристоры, которые мы очень часто используем в качестве бистабильных переключателей в нескольких приложениях.В этих тиристорах используются переключатели, которые необходимо включать и выключать. Для включения тиристоров существуют методы включения тиристоров, называемые методами срабатывания тиристоров. Точно так же для отключения тиристоров существуют методы, называемые методами коммутации тиристоров. Прежде чем обсуждать методы коммутации тиристоров, мы должны кое-что узнать об основах тиристоров, таких как тиристоры, работа тиристоров, различные типы тиристоров и способы включения тиристоров.

Тиристор

Двух-четырехпроводные полупроводниковые устройства, состоящие из четырех слоев чередующихся материалов N- и P-типа, называются тиристорами.Обычно они используются как бистабильные переключатели, которые работают только при срабатывании затвора тиристора. Триистор также называют кремниевым выпрямителем или тиристором.


Тиристор

Методы коммутации тиристора

Как мы уже выяснили выше, тиристор можно включить, запустив клемму затвора с помощью короткого импульса низкого напряжения. Но после включения он будет работать непрерывно, пока тиристор не будет смещен в обратном направлении или ток нагрузки не упадет до нуля.Эта непрерывная проводимость тиристоров вызывает проблемы в некоторых приложениях. Процесс выключения тиристора называется коммутацией. В процессе коммутации режим работы тиристора изменяется с режима прямой проводки на режим прямой блокировки. Итак, для отключения используются методы коммутации тиристоров или методы коммутации тиристоров.

Методы коммутации тиристоров подразделяются на два типа:

  • Естественная коммутация
  • Принудительная коммутация

Естественная коммутация

Обычно, если мы рассматриваем источник переменного тока, ток будет проходить через линию пересечения нуля при переходе от положительного от пика до отрицательного пика.Таким образом, одновременно на приборе появится обратное напряжение, которое немедленно отключит тиристор. Этот процесс называется естественной коммутацией, поскольку тиристор выключается естественным образом без использования каких-либо внешних компонентов, цепи или источника питания для коммутации.

Естественная коммутация

Естественная коммутация может наблюдаться в контроллерах напряжения переменного тока, выпрямителях с фазовым управлением и циклоконверторах.


Принудительная коммутация

Тиристор можно выключить обратным смещением тиристора или активными или пассивными компонентами.Ток тиристора можно уменьшить до значения ниже значения тока удержания. Поскольку тиристор выключается принудительно, это называется процессом принудительной коммутации. Базовая электроника и электрические компоненты, такие как индуктивность и емкость, используются в качестве коммутирующих элементов для целей коммутации.

При питании постоянным током может наблюдаться принудительная коммутация; следовательно, это также называется коммутацией постоянного тока. Внешняя цепь, используемая для процесса принудительной коммутации, называется коммутационной схемой, а элементы, используемые в этой схеме, называются коммутирующими элементами.

Классификация методов принудительной коммутации

Принудительную коммутацию можно классифицировать по различным методам следующим образом:

  • Класс A: самокоммутируется резонирующей нагрузкой
  • Класс B: самокоммутируется по контуру LC
  • Класс C: Cor LC переключается с помощью другого поддерживающего нагрузку SCR
  • Класс D: C или LC переключается с помощью вспомогательного SCR
  • Класс E: Внешний источник импульсов для коммутации
  • Класс F: Коммутация линии переменного тока
Класс A: Самостоятельная коммутация с помощью резонирующего Нагрузка

Класс A — один из часто используемых способов коммутации тиристоров.Если тиристор срабатывает или включается, то анодный ток будет протекать, заряжая конденсатор C точкой как положительной. Схема второго порядка с недостаточным демпфированием образована катушкой индуктивности или резистором переменного тока, конденсатором и резистором. Если ток нарастает через SCR и завершает полупериод, то ток индуктора будет течь через SCR в обратном направлении, что отключит тиристор.

Класс A-Коммутация

После коммутации тиристора или выключения тиристора, конденсатор начнет экспоненциально разряжаться от своего пикового значения через резистор.Тиристор будет находиться в состоянии обратного смещения, пока напряжение конденсатора не вернется к уровню напряжения питания.

Класс B: самокоммутируется цепью LC

Основное различие между методами коммутации тиристоров класса A и класса B состоит в том, что LC соединен последовательно с тиристором в классе A, тогда как параллельно с тиристором в классе B. срабатывая на SCR, конденсатор заряжается (точка указывает на плюс). Если SCR срабатывает или подает импульс запуска, то результирующий ток имеет две составляющие.Постоянный ток нагрузки, протекающий через нагрузку R-L, обеспечивается большим реактивным сопротивлением, подключенным последовательно с нагрузкой, которая ограничена диодом свободного хода. Если синусоидальный ток протекает через резонансный контур L-C, то конденсатор C заряжается отрицательной точкой в ​​конце полупериода.

Класс B-Коммутация

Полный ток, протекающий через SCR, становится равным нулю, при этом обратный ток, протекающий через SCR, противодействует току нагрузки для небольшой части отрицательного размаха.Если ток резонансной цепи или обратный ток становится немного больше, чем ток нагрузки, то SCR будет выключен.

Класс C: C или L-C, переключаемый другим SCR, несущим нагрузку

В описанных выше методах коммутации тиристоров мы наблюдали только один SCR, но в этих методах коммутации тиристоров класса C будет два SCR. Один SCR считается основным тиристором, а другой — вспомогательным тиристором. В этой классификации оба могут действовать как основные тиристоры, несущие ток нагрузки, и они могут быть спроектированы с четырьмя тиристорами с нагрузкой на конденсатор с использованием источника тока для питания интегрального преобразователя.

Класс C-Коммутация

Если срабатывает тиристор Т2, то конденсатор заряжается. Если тиристор T1 срабатывает, то конденсатор разряжается, и этот разрядный ток C будет противодействовать потоку тока нагрузки в T2, поскольку конденсатор переключается на T2 через T1.

Класс D: LC или C, переключаемый вспомогательным тиристором

Методы коммутации тиристоров классов C и D можно дифференцировать с током нагрузки в классе D: только один из тиристоров будет пропускать ток нагрузки, а другой действует как вспомогательный тиристор, тогда как в классе C оба тиристора будут пропускать ток нагрузки.Вспомогательный тиристор состоит из резистора на аноде, сопротивление которого примерно в десять раз превышает сопротивление нагрузки.

Класс D-Коммутация

При срабатывании Ta (вспомогательного тиристора) конденсатор заряжается до напряжения питания, а затем Ta выключается. Дополнительное напряжение, если оно есть, из-за значительной индуктивности во входных линиях, будет разряжаться через цепь диод-индуктор-нагрузка.

Если Tm (главный тиристор) срабатывает, то ток будет течь по двум путям: коммутирующий ток будет течь по пути C-Tm-L-D, а ток нагрузки будет течь через нагрузку.Если заряд на конденсаторе реверсируется и удерживается на этом уровне с помощью диода, и если Ta ​​повторно запускается, тогда напряжение на конденсаторе появится на Tm через Ta. Таким образом, основной тиристор Tm будет выключен.

Класс E: Внешний источник импульсов для коммутации

Для методов коммутации тиристоров класса E, трансформатор, который не может насыщаться (поскольку у него достаточно железа и воздушного зазора) и способный выдерживать ток нагрузки с небольшим падением напряжения по сравнению с с питающим напряжением.Если тиристор Т срабатывает, то ток будет протекать через нагрузку и импульсный трансформатор.

Класс E-Commutation

Внешний генератор импульсов используется для генерации положительного импульса, который подается на катод тиристора через импульсный трансформатор. Конденсатор C заряжен примерно до 1 В, и считается, что он имеет нулевой импеданс на время импульса выключения. Напряжение на тиристоре меняется на противоположное с помощью импульса электрического трансформатора, который обеспечивает ток обратного восстановления, и в течение необходимого времени выключения он удерживает отрицательное напряжение.

Класс F: Коммутация линии переменного тока

В методах коммутации тиристоров класса F для питания используется переменное напряжение, и в течение положительного полупериода этого источника питания будет течь ток нагрузки. Если нагрузка сильно индуктивна, то ток будет оставаться до тех пор, пока энергия, накопленная в индуктивной нагрузке, не рассеется. Во время отрицательного полупериода, когда ток нагрузки становится равным нулю, тиристор отключается. Если напряжение существует в течение номинального времени выключения устройства, то отрицательная полярность напряжения на выходном тиристоре выключит его.

Класс F-Коммутация

Здесь продолжительность полупериода должна быть больше, чем время выключения тиристора. Этот процесс коммутации аналогичен концепции трехфазного преобразователя. Рассмотрим, в первую очередь, Т1 и Т11 проводят с углом срабатывания преобразователя, равным 60 градусам, и работают в режиме непрерывной проводимости с высокоиндуктивной нагрузкой.

Если тиристоры Т2 и Т22 срабатывают, то мгновенно ток через входящие устройства не поднимется до уровня тока нагрузки.Если ток через входящие тиристоры достигнет уровня тока нагрузки, то начнется процесс коммутации выходных тиристоров. Это обратное напряжение смещения тиристора должно продолжаться до тех пор, пока не будет достигнуто состояние прямой блокировки.

Тиристор можно просто назвать управляемым выпрямителем. Существуют различные типы тиристоров, которые используются для разработки инновационных электрических проектов на базе силовой электроники. Процесс включения тиристора путем подачи запускающих импульсов на клемму затвора называется запуском.Точно так же процесс отключения тиристора называется коммутацией.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *