Защита динамиков от постоянного напряжения: Защита акустических систем (5 вариантов схем)

Содержание

Схема защиты акустических систем от постоянного напряжения


Схема защиты акустических систем от постоянного напряжения является первостепенной задачей при построении любого звукоусиливающего или аудио воспроизводящего проекта. Одна из причин выхода из строя колонок заключается в том, что при возникновении неполадок в усилителе мощности звука в его выходном тракте может появится постоянный ток.

Схема защиты акустических систем от постоянной составляющей

Именно постоянное напряжение в выходной цепи усилителя может стать убийцей акустической системы. Схема защиты динамика определяет появившееся напряжение постоянного тока на выходе усилителя и отключает громкоговоритель. Уровень постоянного напряжения, который схемы защиты может обнаружить, очень низкий (0,7… 1 В), поэтому динамик надежно защищен от воздействия постоянного напряжения.

Схема защиты акустических систем подключается к выходным цепям усилителей мощностью 2×200 или 1×400 Вт с помощью двух-контактного реле, при этом нет необходимости делать какие-либо дополнительные действия на имеющемся усилителе.

Принцип работы устройства защиты заключается в подключении релейного выхода усилителя в схеме защиты громкоговорителей с акустической системой. При этом обеспечивается задержка включения АС в соответствии с установленным временем, тем самым предотвращая появление акустического щелчка в динамиках.

Другими словами, громкоговорители защищены от моментального подключения нагрузки, которая происходит при первом включении усилителя, а время задержки регулируется с помощью подстроечного резистора 100 кОм.

Кроме того, я добавил в схему термопредохранитель, чтобы предотвратить сбои, которые могут возникнуть из-за перегрева усилителя. Тепловой предохранитель, установленный на радиаторе усилителя, отключает напряжение схемы защиты при достижении высокой температуре. Происходит это путем размыкания контактов реле и разъединяет цепь акустических колонок от схемы усилителя. Номинал термопредохранителя может составлять 70… 75 градусов.

Схема защиты громкоговорителя

Схема имеет выпрямитель переменного напряжения, собранного на стабилизаторе 7812 12V, который рассчитан на работу с переменным напряжением от 2x12v до 2X24v AC. Вы можете использовать его напрямую с одним источником постоянного напряжения. Входное напряжение стабилизатора 7812 составляет 35v постоянного тока.

Но поскольку кулер небольшой, я не рекомендую использовать полное напряжение в вольтах. Лучше будет, если вы добавите резистор 2… 3 Вт (RES) ко входу стабилизатора 7812, чтобы использовать его при напряжении 35v или выше.

Тестирование схемы защиты акустической системы проводилось с использованием резистора номиналом 22 кОм на аудиовходе.

Разводка печатной платы схемы была сделана с помощью программы Sprint 6. Односторонняя печатная плата. Размеры: 47×49 мм

Схема защиты динамика

Скачать печатную плату: PCB

Устройство защиты ас от постоянного напряжения. Простая и надежная защита ас

Универсальный блок защиты АС выполнен на малогабаритных деталях и может быть встроен в любой усилитель, не имеющий подобной защиты. Особенность этого блока — в применении встроенного питания от сети, надёжных электромагнитных реле и светодиодной индикации появления постоянного напряжения на выходе усилителя. Устройство обеспечивает стабильную задержку и защиту даже после кратковременного пропадания сетевого напряжения.

Известно, что при подаче питания на усилитель в акустической системе (АС) может возникнуть громкий щелчок (хлопок). Чтобы устранить это явление, необходимо подключать нагрузку к выходу УМЗЧ с некоторой задержкой, достаточной для завершения всех переходных процессов (обычно 1…3 с) . При отключении же питания АС должна отключиться до момента, когда накопительные конденсаторы фильтра питания усилителя заметно разрядятся (более чем на 20 %). В противном случае процесс выключения тоже может создать неприятные призвуки или щелчки.

Представленный модуль реализует функции бесшумного включения и выключения усилителя (фактически АС), а также позволяет защитить НЧ-головки АС при появлении постоянного напряжения на выходе УМЗЧ, связанного с его аварийной работой или выходом из строя.

Технические характеристики

Напряжение питания, В………..190…264

Напряжение срабатывания защиты, В…………….0,6…0,7

Время задержки включения/перезапуска, с………..2,5…3

Время срабатывания защиты (U вх = 2 В), с, не более 1,4

Время срабатывания защиты (U вх = 20 В), с, не более 0,25

Время выключения модуля, с, не более………………0,25

Потребляемая мощность, Вт, не более………………2,5

Максимальный коммутируемый ток, А………………..12

С реализацией задержки и защиты АС вопросов не возникает. Но как реализовать быстрое отключение АС при пропадании (относительно кратковременном) сетевого напряжения, но дос-таточном для возникновения переходного процесса и щелчка? Есть два разумных варианта: использование информации о наличии переменного напряжения в одной из существующих вторичных обмоток трансформатора, питающего УМЗЧ (как это реализовано в микросхеме μРС1237 ), или использование отдельного трансформатора питания (либо от дополнительной обмотки трансформатора УМЗЧ) для узла защиты. Первый вариант накладывает определённые ограничения, сужая универсальность модуля. Второй же позволяет использовать в питании устройства сглаживающий конденсатор небольшой ёмкости, благодаря чему блок защиты гарантированно отключит АС быстрее, чем разрядятся конденсаторы в блоке питания УМЗЧ.

Очевидно, что второй вариант — более надёжный и простой в реализации,позволяющий подключить модуль практически к любому усилителю. Недостаток такого решения — более высокая стоимость за счёт применения дополнительного блока питания, но универсальность и надёжность здесь превалируют.

Схема устройства показана на рис. 1. Его входы нужно подключать к выходам каналов стереофонического УМЗЧ, а выходы — к нагрузкам (АС) соответствующих каналов. Общий провод модуля, громкоговорителей АС (или кроссовера) подключают к общему проводу усилителя непосредственно.

Рис. 1. Схема устройства

При подаче напряжения питания конденсатор C6 медленно заряжается через резистор R10 до 1,9 В (определяется соотношением сопротивления резисторов R10 и R11), что достаточно для открывания транзистора VT4. Срабатывают реле K1, K2, и нагрузка подключается к усилителю.

При возникновении на любом из входов устройства (контакты Х2а, ХЗа) постоянного напряжения более ±0,6…0,7 В открывается соответствующий транзистор (VT1 — для напряжения плюсовой полярности, VT2 — минусовой полярности), включая излучающий диод оптопары U1 или U2. Освещённый фототранзистор оптопары через резистор R8 разряжает конденсатор С6, и полевой транзистор VT4 закрывается, обесточивая реле. Свечение светодиода HL1 индицирует отключение АС и неисправность УМЗЧ. Резистор R8 ограничивает ток разрядки конденсатора С6, а резисторный делитель R4R5 обеспечивает искусственную среднюю точку питающего напряжения.

Большинство подобных устройств защиты и задержки включения АС имеют неприятный недостаток — отсутствие задержки при рестарте за короткий промежуток времени после отключения питания. Пример такой ситуации — кратковременное пропадание электричества в сети. Этот недостаток не позволяет получить должного уровня защиты АС и всей аппаратуры в целом, где применён такой узел. Для исключения этого недостатка введены элементы R9, С5, VT3. Эта цепь кратковременно срабатывает при пропадании и появлении напряжения питания, разряжая конденсатор С6, что и обеспечивает нормальный последующий старт узла защиты. Применение полевого транзистора VT4 с пониженным напряжением открывания (примерно 1,5 В) обеспечивает меньшее напряжение заряда С6, причём время рестарта практически равно времени первого включения. При сохранении постоянных времени зарядки-разрядки конденсатора С6 его ёмкость можно существенно уменьшить, соответственно увеличив сопротивление резисторов R8-R11. Ёмкость конденсатора С1 увеличивать не рекомендуется — она определяет скорость выключения блока защиты.

При номинальном сетевом напряжении 230 В и комнатной температуре 25 о С стабилизатор DA1 нагревается до 50…52 о С. При проверке на максимальном переменном напряжении 274 В (ограничено возможностями ЛАТРа) нагрев стабилизатора составил 64…65 о С — всё в пределах нормы. Если исключить резистор R1, то нижняя допустимая граница питания блока упадёт до 170 В, но при этом увеличится нагрев DA1 в среднем на 10…12 о С. Понятно, что это изменение целесообразно лишь для местности, где напряжение в сети всегда ниже номинального.

Если представить себе ситуацию, когда оба канала УМЗЧ выходят из строя, и в первом канале на выходе образуется напряжение одной полярности, а на втором — обратной полярности, равное по модулю напряжению на выходе первого канала (с разницей менее 0,6…0,7 В), то после суммирования через резисторы R2 и R3 получится напряжение, которого недостаточно для открывания транзистора VT1 или VT2. То есть система защиты не сработает, и это является недостатком (его можно преодолеть изменением сопротивления одного из этих резисторов на ±10 %). Но вероятность такого события пренебрежимо мала и является скорее примером гипотетического моделирования отказа.

Печатная плата (рис. 2), имеющая размеры 66×45 мм, выполнена на фольгированном стеклотекстолите и рассчитана на установку транзисторов в корпусах SOT-23, резисторов типоразмера 0805 (кроме резисторов R1 и R13 — 1206), конденсаторов C2, C5 типоразмера 0805 и диода VD2 в корпусе SMA. На фото рис. 3 показана смонтированная плата со стороны пайки деталей поверхностного монтажа.

Рис. 2. Печатная плата

Рис. 3. Смонтированная плата со стороны пайки деталей поверхностного монтажа

В качестве T1 применён маломощный трансформатор ТПК-2 с вторичной обмоткой на 12 В. Диодный мост может быть любой из серий DB103S-DB107S или MB2S-MB6S, для чего на печатной плате предусмотрены два посадочных места. Диод VD2 — любой с прямым током 1 А и обратным допустимым напряжением не менее 200 В.

Обмотки реле должны быть на ток потребления не более 30 мА (повышенной чувствительности) при напряжении 12 В. Можно было бы использовать одно реле с двумя парами контактов, но автору не удалось найти такого на коммутируемый ток более 8…10 А. Достоинство указанных на схеме реле TRU-12VDC-SB-CL в том, что они имеют на контактах напыление AgCdO (серебро-окись кадмия), устойчивое к механическому износу, и максимальный коммутируемый ток 12 А. Заменить их можно более доступными реле SRD (T73) 12VDС-L-S-С фирмы SONGLE, допускающими ток коммутации до 10 А.

Оптопары U1, U2 можно применить практически любые с соответствующей структурой, например, PS2501, PC817. Светодиод HL1 — любой, желательно красного цвета свечения, например, из серии АЛ307 или иные.

Транзисторы VT1-VT3 могут быть заменены любыми другими маломощными транзисторами соответствующей структуры и типоразмера. Возможно использование MMBT5551, MMBT4401 (VT1, VT3) и MMBT5401, MMBT4403 (VT2).

В качестве замены n-канального полевого транзистора (ПТ) VT4 с низким пороговым напряжением затвора (Gate Threshold Voltage) можно порекомендовать NTR4003N, IRLML2502. Если подобные замены недоступны, то допустимо применить иной n-канальный ПТ с изолированным затвором, ориентируясь на сопротивление открытого канала не более 3…5 Ом, максимальное напряжение сток-исток — не менее 20 В и максимальный ток стока — не менее 300 мА. В этом случае в схему потребуется внести следующие изменения: R8 = 75 Ом, R10 = R11 = 68 кОм, C6 = 47 мкФ на 16 В. Но следует помнить, что время задержки при быстром рестарте немного уменьшится. Так как пороговый уровень включения у различных ПТ может значительно отличаться, то, возможно, потребуется подкорректировать время задержки включения реле подбором пары резисторов R10, R11 из условия их равенства.

Плавкую вставку FU1 можно использовать на ток 0,16 или 0,25 А, например, отечественную ВП4-10 0,2 А, имеющую малые габариты и гибкие выводы для монтажа на плату. Клеммники X1-X3 — серии DG127, XY304 или аналогичные. Как видно из схемы, центральный контакт в X1 не используется. Это сделано для того, чтобы увеличить зазор между проводниками сетевого питания.

Собранное устройство (его фото на рис. 4) не нуждается в налаживании и работает сразу после подачи питания. Его конструкция повторена много раз, и высокая надёжность подтверждена длительной эксплуатацией.

Рис. 4. Собранное устройство

На рис. 5 представлена схема, позволяющая исключить малогабаритный трансформатор. В качестве примера показана упрощённая схема блока питания УМЗЧ с напряжением +/-30 В. При этом немного изменены как схема, так и способ подключения модуля к усилителю.

Рис. 5. Схема, позволяющая исключить малогабаритный трансформатор

Модуль имеет двухполярное питание через гасящие резисторы R8, R9, поэтому формирование искусственной средней точки не требуется (резисторы R4, R5 на рис. 2). Для большей эффективности реле включены последовательно и добавлен конденсатор (C4) в качестве фильтра питания.

На компонентах VD1, R5, C3 выполнен однополупериодный выпрямитель, напряжение с которого подаётся на оптопару U3. В исходном состоянии за счёт резистора R10 транзистор VT3 находится в режиме насыщения, шунтируя конденсатор С5 до тех пор, пока не появится напряжение на излучающем диоде оптопары U3, после чего VT3 закрывается и С5 начинает медленно заряжаться, открывая транзистор VT4. При этом общее время задержки подключения нагрузки достигает 2…2,5 с.

При выключении усилителя конденсатор С3 быстро разряжается, обесточивая оптопару U3. Транзистор VT3 открывается и разряжает конденсатор C5, вследствие чего отключаются реле с нагрузкой. Таким образом, реализуется механизм быстрого выключения с общим временем не более 0,3…0,5 с.

Последующий старт включения происходит с разряженным конденсатором C5, поэтому, в отличие от схемы на рис. 2, его принудительная разрядка не требуется.

В качестве VT4 можно применить n-канальный ПТ с пороговым напряжением открывания 2…5 В и максимальным током стока не менее 1 А, например, IRF510-IRF540, IRF610-IRF640. Выпрямительный диод VD1 — любой с обратным напряжением не менее 100 В и прямым током от 100 мА: SF12-SF16, 1 N4002-1N4007 и пр. При использовании реле с обмотками, потребляющими ток 50 мА, необходимо изменить номиналы резисторов R8, R9 на 330 Ом.

Примечание: Для повышения надёжности работы между базой и эмиттером транзистора VT3 (рис. 1) надо установить резистор сопротивлением 50…100 кОм.

Литература

1. Атаев Д. И., Болотников В. А. Функциональные узлы усилителей высококачественного звуковоспроизведения. — М.: Радио и связь, 1989, с. 120.

2. UPC1237. Protector IC for stereo power amplifier. — URL: http://www.unisonic.com. tw/datasheet/UPCI 237.pdf (21.03.16).

Дата публикации: 10.07.2016

Мнения читателей
  • Rymkin / 05.02.2019 — 03:06
    Здравствуйте! Можно ли применить трансформатор на 15 вольт? В статье опечатка,»Заменить их можно более доступными реле SRD (T73) 12VDС-L-S-С фирмы SONGLE, допускающими ток коммутации до 10 А.», на самом деле марка реле SRD (T73) 12VDС-SL-С.

Защита акустических систем (АС) просто необходима, и если ее не использовать, то можно лишиться своей акустики из-за неисправности усилителя НЧ. Существует множество схем обеспечивающих защиту АС. В этой статье представлена рабочая, проверенная временем и любителями звука схема, которая представляет приближенную копию защиты акустической системы усилителя БРИГ.

Схема обеспечивает защиту от напряжения постоянного тока на выходе усилителя НЧ (в случае его неисправности), а также обеспечивает задержку подключения АС до тех пор, пока не закончатся все переходные процессы в усилителе и блоке питания. Без такой задержки, при включении усилителя в сеть, в АС слышны щелчки, хлопки, звон и т.д.

Основные характеристики защиты акустической системы

Напряжение питания постоянным током от +27В до +65В.

Время задержки подключения АС от 1 секунды до 3 секунд.

Чувствительность по напряжению постоянного тока на входе защиты ±1,5В.

Схема защиты акустической системы

На элементах VD5, VD6, VT5, R13 собран стабилизатор напряжения, который обеспечивает широкий диапазон питающих напряжений. На VT5 необходимо установить небольшой радиатор. Диоды VD3 и VD4 необходимы для исключения помех от самоиндукции обмотки реле во время коммутации. Транзисторы VT3, VT4 являются управляющими для обмоток реле K1 и K2. Диоды VD1 и VD2 защищают транзисторы VT1 и VT2 от пробоя, в случае появления на входе схемы отрицательного напряжения. Электролитические конденсаторы C3 и С4 напрямую влияют на время задержки, чем больше емкость, тем больше время.

Элементы схемы

Все резисторы должны быть мощностью 0,25Вт, резистор R13 можно установить на 0,5Вт, особенно при напряжении питания схемы от 40В и выше. Электролитические конденсаторы должны быть рассчитаны на напряжение в полтора раза больше чем напряжение питания схемы (я установил на 63В). Хотя только на C5 присутствует напряжение питания схемы, а на остальных электролитах единицы Вольт.

Вместо BDX53 можно применить BD875, КТ972. Расположение выводов у всех транзисторов разное, поэтому будьте внимательны в случае замены.

Транзистор 2n5551 является очень распространенным и присутствует на многих прилавках, но все же его можно заменить на КТ3102, BC546, BC547, BC548. Расположение выводов также разное.


Данный проект защиты акустики повзаимствован на одном из португальских сайтов. Кроме защиты от постоянки блок обеспечивает задержку подключения колонок к выходу усилителя мощности примерно от 3 до 10 секунд, устраняя при этом щелчки при включении питания усилителя. Принципиальная схема:

В схеме применены реле на напряжение 12 Вольт с одной группой переключающихся контактов, способных держать ток 6…8 Ампер.

В статье оригинале были приведены следующие изображения печатной платы:

И вид платы PCB формата:

Используя данные изображения мы нарисовали плату защиты в программе Sprint Layout. LAY6 формат выглядит так:

Фото-вид печатной платы защиты акустики LAY6 формата:

Фольгированный стеклотекстолит односторонний. Размер платы мы чуток уменьшили, теперь он стал 45 х 75 мм.

В качестве блока питания схемы применен обычный параметрический стабилизатор, напряжение стабилизации 12 Вольт. Схема показана ниже:

Надеемся для вас не составит труда расчитать номинал токоограничивающего резистора для стабилитрона, на схеме он указан стрелкой. Его номинал будет зависеть от того, какое напряжение у вас будет после диодного моста. Так же БП можно реализовать на LM7812.

Подключение блока защиты и акустики к усилителю мощности показано на следующем изображении:

Список элементов схемы блока защиты акустики:

Реле 12 Вольт — 2 шт.
Транзисторы 2SC945 — 2 шт.
Транзистор 2SC9013 – 1 шт.
Диоды 1N4007 – 5 шт.
Электролитические конденсаторы 220 uF/ 50V – 2 шт.
Резисторы 10 кОм – 4 шт.
Резистор 1 кОм – 1 шт.
Резистор 39 кОм – 1 шт.
Разъемы 2 Pin – по усмотрению
Подстроечный резистор 220…500 кОм – 1 шт.
Стабилитрон 12 Вольт 1 Ватт – 1 шт. (например импортный 1N4742A)

Плата блока защиты акустики в сборе:

Ссылка на скачивание архива со схемой и печатной платой LAY6 формата появится на этой же странице после клика по любой строке рекламного блока ниже кроме строки “Оплаченная реклама”. Размер файла – 0,3 Mb.

Проверили его работоспособность, оценили качество звука основного канала. Самое время добавить в него модуль защиты от случайных замыканий, чтоб вся работа не пошла лесом, из-за неизбежных случайностей в процессе его эксплуатации. Также соберём остальные маломощные каналы УНЧ, для подключения тыловых колоночек.

ЗАЩИТА АС УМЗЧ


Изначально задумал использовать схему защиты от БРИГ , но затем читая отзывы о симисторной защите захотел попробовать ее. Блоки защиты были сделаны в самом конце, тогда было туго с финансами, а симисторы и прочие компоненты схемы у нас оказались довольно дороги, поэтому вернулся к релейной защите. Напоминаю, что все схемы находятся обзора.

В итоге были собраны три блока защиты, один из них для сабвуферного усилителя, а два остальных для каналов ОМ.


В сети можно найти большое количество схем блоков защиты, но эта схема перепробована мной неоднократно. При наличии постоянного напряжения на выходе (выше допустимого) защита мгновенно срабатывает спасая динамическую головку. После подачи питания реле замыкается, а при срабатывания схемы оно должно размыкаться. Защита включает головку с небольшой задержкой — это тоже в свою очередь, является дополнительной страховкой и щелчок после включения, почти не слышен.


Компоненты блока защиты могут отклоняться от указанного, Основной транзистор можно заменить на наш КТ815Г , использовал высоковольтные транзисторы MJE13003 — их у меня навалом, кроме того, они довольно мощные и не перегреваются в ходе работы, поэтому в теплоотводе не нуждаются. Маломощные транзисторы можно заменить на S9014, 9018, 9012 , даже на КТ315 , оптимальный вариант — 2N5551 .


Реле на 7-10 Ампер, подобрать можно любое реле на 12 или 24 Вольта, в моем случае на 12 Вольт.


Блоки защиты для каналов ОМ установлены возле трансформатора второго инвертора, работает все это дело довольно четко, при максимальной громкости защита может сработать (ложно) крайне редко.

МАЛОМОЩНЫЕ УСИЛИТЕЛИ


Долго решал какой усилитель использовать для маломощных акустических систем. Как дешевый вариант вначале решил использовать микросхемы TDA2030 , потом подумал, что 18-ти ватт на канал маловато и перешел к TDA2050 — умощненный аналог на 32 ватта. Затем сравнив звучание основных вариантов выбор впал на любимую микросхему — LM1875 , 24 ватта и качество звучания на 2-3 порядка лучше, чем у первых двух микросхем.


Долго копался в сети, но печатную плату под свои нужды так и не нашел. Сидя за компом несколько часов была создана своя версия для пятиканальноо усилителя на микросхемах LM1875 , плата получилась довольно компактной, на плате также предусмотрен блок выпрямителей и фильтров. Этот блок был полностью собран за 2 часа — все компоненты к тому времени имелись в наличии.


ВИДЕО УСИЛИТЕЛЯ


Качество звучания этих микросхем на очень высоком уровне, в конце концов разряд Hi-Fi , отдаваемая мощность приличная — 24 ватта синуса, но в моем случае мощность повышена путем повышения питающего напряжения до 24-х вольт, в таком случае можно получить порядка 30 ватт выходной мощности. На основной плате усилителя у меня было предусмотрено место для 4-х канального усилителя на TDA2030 , но чем-то оно мне не понравилось…


Плата для LM крепится на основную плату УНЧ через стойки в виде трубок и болтов. Питание для этого блока берется со второго инвертора, предусмотрена отдельная обмотка. Выпрямитель и фильтрующие конденсаторы расположены непосредственно на плате усилителя. В качестве выпрямительных диодов уже традиционные КД213А .

Дросселей для сглаживания ВЧ помех не использовал, да и нет нужды их применять, поскольку даже в довольно брендовых автомобильных усилителях их часто не ставят. В качестве теплоотвода использовал набор дюралюминиевых болванок 200х40х10 мм.


На плату также укреплен кулер, который одновременно отводит теплый воздух с этого блока и отдувает теплоотводы инверторов. С электроникой аудиокомплекса полностью разобрались — переходим к С уважением — АКА КАСЬЯН .

Обсудить статью ДОМАШНИЙ УСИЛИТЕЛЬ — УНЧ И БЛОК ЗАЩИТЫ

На фото выше то, что получилось в итоге. Чем хороша качественная аппаратура, в том числе аудио усилители, так это наличием всякого рода дополнительных узлов, которые помогают сохранить жизнь отдельным схемам внутри усилителя, а также подключаемым к усилителю узлам

Летом в порыве ностальгии я собрал себе простенький, но тем не менее хорошо звучащий усилитель . И так как прибор ручной работы, то захотелось в него добавить блок защиты АС от внезапных проблем внутри усилителя. У нас же не военная приемка. Так что защита может пригодится =)

Например, вдруг какой-либо канал усилителя выйдет из строя и вместо переменного напряжения у него на выходе появится большое постоянное. От которого АС сначала чихнет, а потом выплюнет диффузор далеко за пределы своей коробки.

Работает она просто. Во-первых, задерживает подключение АС к усилителю. Благодаря этому нет щелчков в АС при включении усилителя. Во-вторых, отключает АС от усилителя, если на его выходе появляется постоянное напряжение большее +/- 1.5 В

Я немного подредактировал исходную ПП для своих нужд и целей. Но в целом использовал, что нашел в сети. Спасибо нашему радиолюбительскому миру, жить в котором с появлением интернета стало значительно лучше и интересней =)

При сборке использовались вперемешку импортные и отечественные компоненты. Я так думаю, что беды в этом никакой. Я его слепил из того, что было. Покупал разве что рэлюшки.

За 8 месяцев активной, ежедневной эксплуатации усилитель (вместе с защитой) показали себя прекрасно. Конечно я не выжимал все 70Вт с каждого канала (в домашних условиях даже 10 Вт уже достаточно громко, а на 20-30Вт соседи готовы застучать в стеночку).

Схема защиты АС

    Практически все мощные усилители звука, выполненные на транзисторах или на микросхемах, несут в себе опасность вывода из строя нагрузки, которой являются акустические системы (АС). В случае пробоя транзисторов выходного каскада постоянное напряжение начинает поступать прямо на динамики колонок. Секунды достаточно, чтобы катушка динамической головки сгорела, а стоимость хороших АС может даже превышать цену самого усилителя ЗЧ. Не спасает часто и система защиты внутри микросхем, ведь если в документации на интегральную микросхему написано о наличии встроенной системы защиты акустики от постоянного напряжения, то это не означает, что все в порядке и можно иметь 100% гарантию защиты. Микросхема с защитой иногда тоже может сжечь звуковые катушки динамиков в том случае, когда детали защиты и выходной каскад уже сгорели.

   Поэтому вы должны использовать в любой усилитель, особенно мощностью более 20 ватт, блок защиты громкоговорителей. Простая и хорошо повторяемая схема показана на рисунке ниже.

Схема защиты АС

Первая часть — DC детектор. Эта цепь будет инициировать срабатывание, если постоянное напряжение присутствует на входной звуковой аудиолинии. Сигнал проходит через фильтр низких частот, а затем с помощью диодов детектируется. Если замечено появление постоянного тока на входе, схема приведёт к открытию двух транзисторах, которые будут открывать Q3, который вызывает выключение АС через коммутационный модуль.

   Блок реле, которые разрывает выход УМЗЧ на АС, управляется двумя транзисторами BC549 (их аналог кт815). Сигнал на него идёт от предыдущих блоков. Питание здесь однополярное, в пределах 12-30 вольт. Все диоды — обычные выпрямительные на ток от 0,5 ампер.

Схема защиты АС — второй вариант

   Второй вариант схемы состоит из диодного распределителя (VD1–VD6) и электронного реле на транзисторах VT1–VT4. К выходам каналов УМЗЧ оно подключается вместе с громкоговортелями через контакты реле. Цепи R1C1, R2C2 предотвращают срабатывание устройства на колебания звуковой частоты. При необходимости число контролируемых каналов можно увеличить простым подключением соответствующего числа дополнительных цепей, аналогичных цепи R1C1VD1VD2, и применением электромагнитного реле с большим числом контактных групп. При включении питания (это может быть блок питания УМЗЧ) начинает заряжаться через резистор R9 конденсатор С3, поэтому транзистор VT4 закрыт и реле обесточено. По мере зарядки напряжение на конденсаторе растёт, транзистор VT4 начинает открываться и через несколько секунд его эмиттерный ток возрастает настолько, что реле срабатывает и подключает АС к выходу УМЗЧ.

   Актуальность использования модуля защиты АС вызвана тем, что все современные усилители НЧ построены с использованием двухполярного источника питания и с непосредственной связью с нагрузкой. Такая структура усилителя имеет существенный недостаток — возможность появления на выходе усилителя в случае его неисправности постоянного напряжения и выхода из строя дорогостоящей высококачественной АС. Это и вызывает необходимость в использовании специальных защитных устройств, отключающих нагрузку при появлении на выходе усилителя постоянного напряжения.


Понравилась схема — лайкни!

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ УНЧ

Смотреть ещё схемы усилителей

       УСИЛИТЕЛИ НА ЛАМПАХ          УСИЛИТЕЛИ НА ТРАНЗИСТОРАХ  

   

УСИЛИТЕЛИ НА МИКРОСХЕМАХ          СТАТЬИ ОБ УСИЛИТЕЛЯХ   

    

Защита громкоговорителей схемы. Простая и надежная защита ас. Устройство задержки включения и защиты громкоговорителей


В интернете сейчас представлено огромное количество различных усилителей звука, на любой вкус и цвет, под любые нужны. Как известно, даже самые надёжные усилители имеют свойство выходить из строя, например, из-за неправильных условий эксплуатации, перегрева или неправильного подключения. В этом случае велика вероятность того, что высокое питающее напряжение окажется на выходе усилителя, и, следовательно, беспрепятственно окажется прямо на динамиках акустической системы. Таким образом, вышедший из строя усилитель утягивает за собой «в мир иной» подключенную к нему акустическую систему, которая может стоить гораздо дороже самого усилителя. Именно поэтому крайне рекомендуется подключать усилитель к колонкам через специальную плату, которая называется защитой акустических систем.

Схема

Один из вариантов такой защиты показан на схеме выше. Работает защита следующим образом: сигнал с выхода усилителя подаётся на вход IN, а колонки подключаются к выходу OUT. Минус усилителя соединяется с минусом схемы защиты и идёт к колонкам напрямую. В обычном состоянии, когда усилитель работает и на плату защиты поступает питание реле Rel 1 замыкает вход платы на выход и сигнал идёт напрямую с усилителя на колонки. Но как только на входе появляется постоянное напряжение хотя бы 2-3 вольта, защита срабатывает, реле отключается, тем самым отключая усилитель от колонок. Схема не критична к номиналам резисторов и допускает разброс. Транзистор Т1 можно ставить 2N5551, 2N5833, BC547, КТ3102 или любой другой маломощный npn транзистор. Т2 обязательно должен быть составным с большим коэффициентом усиления, например, BDX53 или КТ829Г. Светодиод на схеме служит для индикации состояния реле. Когда он горит реле включено, сигнал идёт напрямую с усилителя на колонки. Помимо защиты от постоянного напряжения, схема обеспечивает задержку подключения акустической системы. После подачи напряжения питания реле включается не сразу, а через 2-3 секунды, это нужно для того, чтобы избежать щелчков в колонках при включении усилителя. Напряжение питания схемы 12 вольт. Реле можно применить любое с напряжением питания обмотки 12 вольт и максимальным током через контакты хотя бы 10 ампер. Кнопка с фиксацией S1 выводится на проводах, она нужна для принудительного отключения реле, на всякий случай. Если это не требуется, можно просто замкнуть дорожки на печатной плате.

(cкачиваний: 492)

Сборка устройства

Усилители, чаще всего, рассчитаны на два канала, левый и правый, поэтому схему защиты нужно повторить дважды для каждого канала. Для удобства плата разведена так, что на ней уже предусмотрена сборка сразу двух одинаковых схем. Печатная плата изготавливается методом ЛУТ, её размеры составляют 100 х 35 мм.


После сверления отверстий дорожки желательно залудить. Теперь можно приступать к запаиванию деталей. Особое внимание следует уделить цоколёвке транзисторов, очень важно не перепутать её и впаять транзисторы нужной стороной. Как обычно, сначала запаиваются мелкие детали – резисторы, диоды, конденсаторы, а уже затем транзисторы, клеммники, и в самую последнюю очередь массивные реле. Для подключения всех проводов можно использовать клеммники, места для которых предусмотрены на плате. После завершения пайки нужно смыть остатки флюса с дорожек, проверить правильность монтажа.

Испытания защиты

Теперь, когда плата полностью готова, можно приступать к испытаниям. Подаём питание на схему (12 вольт), спустя две секунды одновременно должны щёлкнуть реле и включиться светодиоды. Теперь берём какой-нибудь источник постоянного напряжения, например, батарейку, и подключаем её между минусом схемы и входом. Реле должно сразу же выключиться. Убираем батарейку – реле вновь включается. Можно подключить батарейку, поменяв её полярность, схема срабатывает независимо от того, какой полярности напряжение появится на её входе. Те же самые манипуляции проделываем со второй схемой, расположенной на этой же плате. Порог срабатывания защиты составляет примерно 2 вольта. Теперь, когда плата защиты протестирована, можно подключать её к усилителю и не бояться, что динамики в дорогостоящих колонках испортятся из-за поломки усилителя. Удачной сборки.

Рассмотрены несколько различных схем устройств. предназначенных для защиты акустических систем (АС) и реализации задержки по времени перед подключением АС к выходу усилителя мощности звуковой частоты.

Схема защиты и задержки включения на четырех транзисторах

Приведённое устройство предназначено для задержки подключения громкоговорителей на время переходных процессов в УМЗЧ при включении питания и отключении их при появлении на его выходе постоянного напряжения любой полярности.

Рис. 1. Принципиальная схема устройства защиты акустических систем и задержки включения, выполнена на четырех транзисторах.

Принципиальная схема устройства приведена на рис.1. Оно состоит из диодного распределителя (VD1 — VD6) и электронного реле на транзисторах VT1 — VT4.

К выходам каналов УМЗЧ оно подключается вместе с громкоговиортелями через контакты реле К1. Цепи R1C1, R2C2 предотвращают срабатывание устройства на колебания звуковой частоты.

При необходимости число контролируемых каналов можно увеличить простым подключением соответствующего числа дополнительных цепей, аналогичных цепи R1C1VD1VD2, и применением электромагнитного реле с большим числом контактных групп. Постоянное напряжение на выходе УМЗЧ, при котором срабатывает устройство защиты, определяется напряжением стабилизациистабилитрона VD7 и связано с ним соотношением:

При включении питания (источником напряжения может быть блок питания УМЗЧ) начинает заряжаться (через резистор R9) конденсатор С3, поэтому транзистор VT4 закрыт и реле К1 обесточено.

По мере зарядки напряжение на конденсаторе растёт, транзистор VT4 начинает открываться и через некоторое время (примерно 3с) его эмиттерный ток возрастает на столько, что реле К1 срабатывает и подключает громкоговорители к выходу УМЗЧ.

Транзисторы VT1 — VT3 в исходном состоянии также закрыты. При появлении на выходе любого из каналов напряжения любой полярности, превышающее указанное выше значение , открывается транзистор VT2, а вслед за ним VT1, VT3. В результате конденсатор С3 разряжается через участок эмиттер-коллектор транзистора VT3 и резистор R8, транзистор VT4 закрывается и реле К1 отключает громкоговорители и вход устройства от выхода УМЗЧ.

Транзистор VT1, осуществляющий положительную обратную связь в каскаде на транзисторе VT2, играет роль “защёлки”, поддерживая последний в открытом состоянии и после отключения устройства от выхода УМЗЧ: не будь его, после пропадания напряжения на входе и закрывания транзистора VT2, VT3 вновь началась бы зарядка конденсатора С3 и по истечении времени зарядки громкоговорители снова подключились бы к УМЗЧ.

В устройстве применено реле РЭС-9 (паспорт РС4.524.200). Транзисторы КТ603б (VT3,VT4) могут быть заменены на КТ315г. Для питания устройства используется источник питания 20В.

При большом напряжении из-за обратных токов коллекторов возможно самопроизвольное открывание транзисторов VT1,VT2. Чтобы этого не случилось, необходимо уменьшить сопротивление резисторов R5, R6. Если же напряжение питание больше 30 В, в устройстве следует использовать транзисторы с допустимым напряжением коллектор-эмиттер не менее.

При снижении напряжения (заменой стабилитрона Д814а) необходимо позаботится о том, чтобы амплитуда переменного напряжения низших частот на выходах фильтров R1C1, R2C2 не достигала значений, вызывающих отключение громкоговорителей. Сделать это не трудно — достаточно увеличить постоянные времени названых цепей (например увеличить С1, С2).

Схема улучшенной защиты для АС

Большими возможностями обладает устройство защиты рис.2.

Рис. 2. Принципиальная схема защиты акустических систем от бросков выходного напряжения, питается от источника питания УМЗЧ.

Оно предохраняет громкоговорители от бросков выходного напряжения как при включении, так и при выключении питания, при неисправности УМЗЧ и в моменты вероятного отказа последнего — при понижении или полном исчезновении одного или обоих напряжений питания, а также при превышении ими предельно допустимых значении (это может иметь место при питании от стабилизированных источников) и, наконец, отключает их при подсоединении головных стерео телефонов. Питается устройство от того же двуполяного источника, что и выходные каскады УМЗЧ.

В момент включения питания начинает заряжаться конденсатор С3, поэтому транзистор VT2 открыт, VT3 закрыт, реле К1 обесточено и громкоговорители отключены. Как только напряжение на конденсаторе достигает значения

Напряжение стабилизации стабилитрона VD9), состояния указанных транзисторов изменяются на обратные, срабатывает реле К1 и громкоговоритель подключаются к выходам каналов УМЗЧ.

Приведенная формула справедлива при условии: .

Время задержки при указанных на схеме номиналах элементов: .

Напряжение стабилизации стабилитрона VD11 выбрано из условия .

При понижении напряжении любого источника питания на величину, большую чем транзистор VT3 закрывается и реле К1 отключает громкоговорители от УМЗЧ.

Стабилитроны VD7 и VD9 в цепях баз соответственно транзисторов VT1, VT2 одинаковы и выбраны с учётом следующего. Как видно из схемы, для того, чтобы открылся транзистор VT2 (а следовательно, закрылся транзистор VT3 и отпустило реле К1), напряжение питания должно удовлетворять условию:

Где и — соответственно напряжение и минимальный ток стабилизации стабилитрона VD9.

Отсюда: . При указанных на схеме номиналах и типах деталей

А это значит, что при устройство отключит громкоговорители, если отрицательное напряжение питания возрастёт (по отношению к номинальному) на 2,8 В.

Транзистор VT1 открывается по цепи VD1 — R5 — VD7, идентичной цепи VD6 — R7 — VD9. Это приводит к открыванию транзистора VT2 и закрыванию транзистора VT3, т.е. к отключению громкоговорителей при увеличении на 8 В напряжения питания положительной полярности.

В случае появления на выходе УМЗЧ постоянного положительного напряжения транзистор VT2 открывается током протекающим через резистор R3 (или R4), VD4 (VD5) и цепь R7VD9. Условие его открывания в этом случае выглядит так:

Если же напряжение на выходе УМЗЧ имеет отрицательную полярность, по цепи R3 (R4) — VD2 (VD3) — R5 — VD7 открывает транзистор VT1.

Для подключения стереотелефонов служит розетка ХS1, с которой механически связан выключатель SA1. При установке вилки стереотелефонов в розетку контакты выключателя размыкаются, реле К1 отпускает и громкоговорители отключаются от УМЗЧ.

То же происходит и при выключении питания УМЗЧ кнопкой SB1 (А1 — источник питания). Поскольку коллекторная цепь транзистора VT3 и цепь сетевого питания разрываются практически одновременно, громкоговорители отключаются до начала переходного процесса и щелчок не прослушивается.

В устройстве применено реле РЭС-22 (паспорт РФ-4.500.130). Неполярные оксидные конденсаторы С1, С2 — К50-6. Транзистор КТ815В можно заменить любым другим с допустимым напряжением коллектор — эмиттер более 50 В и максимальным током коллектора ни менее значения , где — — сопротивление обмотки реле К1).

Вместо стабилитронов КС527А можно использовать КС482А, КС510А, КС512А, КС175Ж, КС182Ж, КС191Ж и т.п., соединив нужное число приборов для получения напряжения стабилизации, выбранного приведённым формулам. Диоды VD1 — VD6, VD8, VD10, VD12 — любые кремниевые маломощные с обратным напряжением более 50 В.

Схема защиты АС которая питается от сигнала ЗЧ

Оригинальные устройства защиты громкоговорителей (рис.3) питается напряжением сигнала звуковой частоты, что позволяет встроить его в громкоговоритель.

Устройство отключает последний при перегрузке по мощности, а также в случае появления на выходе УМЗЧ постоянного напряжения любой полярности. В схеме использованы громкоговорители мощностью 10 Вт и электрическим сопротивлением 4 Ом.

Рис. 3. Принципиальная схема защиты акустической колонки, которая питается от сигнала ЗЧ.

В исходном состоянии реле К1 обесточено и сигнал ЗЧ (звуковой частоты) с выхода усилителя поступает через контакты К1.1 на громкоговоритель. Одновременно он выпрямляет мостом VD1 — VD4, и его постоянная составляющая через нормально замкнутые контакты К1.2 подводится к пороговому устройству, выполненному на транзисторе VT1 и микросхеме DA1.

Пока напряжение входного сигнала не превышает порога срабатывания, транзистор закрыт и напряжение на выводе 12 микросхемы DA1 равно напряжению стабилизации стабилитрона VD6, что больше напряжения образцового источника микросхемы, которое может находиться в пределах 1,5 …3 В. (Стабилитрон VD6 предотвращает пробой эмиттерного перехода транзистора дифферинциального каскада микросхемы обратным напряжением).

В момент, когда входной сигнал достигает уровня срабатывания устройства (напряжение на движке подстроечного резистора R5 — около 1,5 В), транзистор VТ1 открывается и напряжение на выводе 12 микросхемы DA1 становится меньше образцового.

В результате открывается регулирующий транзистор микросхемы, срабатывает реле К1 и громкоговоритель отключается от УМЗЧ, а обмотка реле подключается непосредственно к выходу выпрямительного моста VD1 — VD4.

При уменьшении выпрямленного напряжения до напряжения опускания реле устройство возвращается в исходное состояние. Аналогично ведёт себя устройство и при появлении на выходе УМЗЧ постоянного напряжения.

Порог срабатывания устанавливают подсроечным резистором R6. Конденсатор С3 предотвращает срабатывание устройства при кратковременном превышении сигналом порога срабатывания.

Минимальное напряжение сигнала, при котором устройство работоспособно, определяется напряжением срабатывания реле. В случае использывания реле РЭС-47 (паспорт РФ4.500.407-04) и деталей с указанными на схеме номиналами оно не превышает 5 В. Стабилитрон VD8 ограничивает напряжение на обмотке реле.

При отсутствии микросхемы К142ЕН1А можно применить К142ЕН1, К142ЕН2 с любым буквенным индексом. Диоды КД522Б можно заменить любым другим с обратным напряжением более 40 В, прямым током не менее 100 мА и максимальной частотой (КД51А, диодные сборки серии К542 и т.п.), стабистор КС107А — любым кремниевым диодом, транзистор КТ3412Б — любым маломощным кремниевым транзистором структуры n-p-n с допустимым напряжением коллектор — эмиттер не менее 40 В.

При изготовлении устройства для защиты громкоговорителей мощных звуковоспроизводящих устройств следует использовать диоды КД204А — КД204В, КД212А, КД212Б, КД213А, КД213Б и т.п., заменить реле РЭС-47 другим, с контактами, допускающими коммутацию больших токов, а если необходимо, и «умощнить» микросхему DA1 внешних транзисторов для обеспечения необходимого тока через обмотку реле.

Может случиться, что в момент срабатывания устройства будет возникать дребезг контактов реле. Предотвратить его можно, включив конденсатор ёмкостью 10…20 мкФ между выводами 16 и 8 микросхемы DA1 или резистор сопротивлением 1 кОм между её выводом 13 и базой транзистора VT1 (создав, таким образом, положительную обратную связь).

Схема защиты АС с применением резисторнорго оптрона

Предлагаемое устройство (рис.4)

Рис. 4. Принципиальная схема защиты акустических систем с применением резисторнорго оптрона.

обеспечивает защиту акусических систем (АС) от повреждения при появлении на выходах стереофонического усилителя постоянного напряжения положительной или отрицательной полярности.

Функции исполнительного элемента защиты выполняет резисторный оптрон U1. Работает он следующим образом. При появлении отрицательного или положительного постоянного напряжения на любом из выходных усилителей звуковой частоты (УЗЧ) через опрон начинает протекать входной ток и сопротивление его резистора резко уменьшается.

Как только величина постоянного напряжения достигнет 3-4 В (в зависимости от экземпляра оптрона), сопротивление это становится столь малым, что транзисторы VT1, VT2 закрываются, обмотка реле К1 обесточиваются и его контакты К1.1, К1.2 отключают АС от УЗЧ.

Стабилитроны VD1, VD2 ограничивают входной ток оптрона величиной 18 мА. Поскольку для стабилитронов Д815А допускается разброс напряжения стабилизации 15%, необходимо подобрать такие экземпляры, чтобы напряжение прикладываемое к светоизлучателю оптрона не превышало 5,5 В.

Дроссели L1, L2 ограничивают переменную составляющую входного тока оптрона до величины исключающей возможность срабатывания защиты. Они выполнены на магнитопроводах ШЛ12*12 и содержат по 1200 витков провода ПЭЛ-0,23. активное сопротивление каждого дросселя 36 Ом.

За счёт большого времени зарядки конденсатора С1 через резистор R1 обеспечивается задержка открывания транзисторов VT1, VT2, срабатывания реле К1 и подключения АС к усилителю.

В результате переходных процессов, возникающие в усилителе после его включения, затухают раньше, чем устройство подключит АС, поэтому щелчок в них не прослушивается.

При включении питания усилителя выключателем 8В1 контакты 1 и 4 последнего замыкаются, вызывая мгновенное закрывание транзисторов VT1, VT2. Естественно АС открывается от усилителя до начала в нём переходных процессов и щелчок в громкоговорителе также не будет слышен.

Устройство защиты АС питается от 2-хполярного источника питания усилителя мощности. При выборе элементов VT1, VT2, C1, R2, K1 следует учитывать величину напряжения источника.

При использовании реле РЭС-9, РЭС-22 устройство защиты можно дополнить системой сигнализации его срабатывания.(рис.5)

Рис. 5. Схема дополнения устройства защиты АС световой сигнализацией.

Описанное устройство разрабатывалось для конкретного усилителя с напряжением питания равным плюс-минус 15 В. В этом случае при появлении на одном из выходов усилителя максимальное напряжение, тепловая мощность, выделяемая на дросселях L1 или L2, не превышает 3 Вт, что исключает его значительный перегрев за время в течении которого может быть сделан вывод о неисправности усилителя мощности (УМ) и принято решение о его выключении.

Второй вариант схемы защиты с оптроном

При более высоком напряжении питания и отсутствии гарантий своевременного обнаружения момента срабатывания устройства защиты его можно собрать по несколько изменённой схеме (рис.6).

Рис. 6. Принципиальная схема устройства защиты акустических колонок, питание от -30 +30В.

В этом случае в момент срабатывания системы защиты питание усилителя мощности отключается. Светоизлучатель оптрона контактами К1.3 реле К1 подключается к источнику питания усилителя, что позволяет удерживать устройство защиты в режиме «Авария».

Кроме того, при отсутствии одного из напряжений 2-хполярного источника питания устройство защиты не подключает к нему УМ и отключает его, если одно из этих напряжений исчезнет. Загорание светодиодов сигнализирует о неисправности в усилителе или источнике питания.

В устройстве, собранном по схеме рис.3, реле К1 должно иметь 4 группы контактов на перелючение (РЭС-22, паспорт РФ4.500.130). Следует отметить, что такая схема системы защиты функции предотвращения щелчков в АС утрачивает.

Схема защиты АС, отключающая усилитель ЗЧ от сети

На рис.7 представлена схема устройства защиты АС , отключает усилитель от питающей сети.

Рис. 7. Принципиальная схема защиты акустических систем, отключающая усилитель ЗЧ от сети 220В.

Для включения усилителя нужно нажать кнопку SB1. При этом напряжение питания поступит на устройство защиты, срабатывает реле К1 и его контакты заблокируют кнопку SB1 так, что при её отпускании УМ остаётся подключенным к источнику питания.

Для отключения усилителя необходимо нажать кнопку SB2. Принцип этого устройства аналогичен описанному выше. Он срабатывает и отключает усилитель от сети при появлении постоянного напряжения на одном из его выходов или пропадании напряжения питания.

Кнопки SB1, SB2 без фиксации в нажатом положении КМ21, КМД2-1, а реле К1-РЭС-32, паспорт РФ 4.500.335-02 (или РЭС-22, паспорт РФ 4.500.130).

Пассивная система защиты для громкоговорителя

Наиболее распространённый способ защиты акустических систем от опасного перенапряжения — их отключение от источника сигнала с помощью электромагнитного реле.

Однако в АС высокого класса применять его нецелесообразно из-за нелинейных искажений, вносимых в воспроизводимый сигнал. Дело в том, что контакты реле имеют собственное активное сопротивление, которое в новых изделиях колеблется от 0,1 (в лучшем случае) до 0,5 Ом.

В результате при прохождении через них электрического тока значительной величины на них рассеивается большая тепловая мощность. Это вызывает окисление металла, из которого изготовлены контакты, что само по себе уже является источником искажений.

Кроме того, в процессе эксплуатации реле окисление увеличивается и сопротивление контактов может возрасти до1 Ома и более, что соизмеримо с сопротивлением самих АС и способно уменьшить их отдачу.

В другом варианте защиты АС при появлении на них опасного перенапряжения выходы УМЗЧ подключается к общему проводу с помощью тиристора до момента срабатывания плавкого предохранителя в цепи питания выходного каскада.

Однако и этот способ имеет существенные недостатки, так как представляет определённую опасность для самого УМЗЧ и связан с необходимостью замены предохранителей.

В ряде зарубежных АС используется поликристаллические элементы, специально разработанные для защиты ВЧ и СЧ головок, но они вносят в сигнал ещё большие искажения и также не могут быть использованы в АС высокого класса.

Предложенное устройство пассивной защиты громкоговорителей представляет собой мощный диодный симметричный ограничитель сигнала звуковой частоты (рис. 8).

Рис. 8. Мощный диодный симметричный ограничитель сигнала звуковой частоты.

Выполнен он в виде 2-хполюсника, включаемого параллельно защищаемой цепи: либо АС в целом, либо какую-то из её излучателей, например, ВЧ или СЧ головке. В последнем случае его устанавливают непосредственно в АС, а в первом он может быть размещён и на выходе УМЗЧ, и в самой АС.

Устройство работает следующим образом. При появлении на его выводах напряжения, превышающего установленный порог ограничения, диоды соответствующей ветви открываются и через них начинает протекать ток.

На диодах рассеивается определённая тепловая мощность, а сигнал, поступающий на АС или излучатель, мягко ограничивается по напряжению и соответственно по мощности.

При уменьшении поступающего на АС напряжения ниже порога срабатывания устройство оно отключается. В ждущем режиме устройство защиты на звуковую частоту не влияет, поскольку в этом случае диоды обеих ветвей закрыты, а их результирующая ёмкость ничтожно мала.

В устройстве следует применять мощные выпрямительные диоды с высокой перегрузочной способностью, повышенной максимальной рабочей частотой и небольшой собственной ёмкостью. из наиболее распространённых можно порекомендовать КД213 с любым буквенным индексом, а также КД2994, КД2995, КД2998, кд2999.

Эти диоды допускают протекание постоянного тока 10..30 А и более в зависимости от типа, а максимальный импульсный ток через них может достигать 100 А.

Без теплоотвода каждый диод способен рассеять электрическую мощность около 1 Вт, что соответствует току порядка 1 А. При установке на простейшие пластинчатые теплоотводы мощность, рассеиваемая каждым диодом, может быть увеличена до 20 Вт. На рис. 9 показана возможная конструкция защитного устройств с использованием пластинчатых теплоотводов.

Рис. 9. Возможная конструкция защитного устройств с использованием пластинчатых теплоотводов.

Из особенностей работы устройства защиты необходимо учитывать следующее. В момент открывания диодов через них протекает небольшой ток. При этом для открывания каждого из диодов необходимо напряжение 0,6…0,7 В в зависимости от его типа.

При дальнейшем увеличении напряжения на гнёздах устройства защиты растёт проходящий ток и соответственно увеличивается падение напряжения на переходах диодов. Величина его может составлять до 1..1,4 В в диапазоне токов до 10…30 А.

Расчёт устройства защиты сводится к определению типа диодов и их числа в каждой ветви. Для этого необходимо определить порог ограничения по мощности и напряжению.

Предположим, что мы хотим защитить от перегрузки динамическую головку с номинальной мощностью 10 Вт и нормальным сопротивлением 8 Ом.

При этом целесообразно определить напряжение на уровне мощности порядка 8 Вт. Тогда через головку должен протекать ток равный 1 А при подводимом напряжении 8 В.

При использовании диодов КД213 с пороговым напряжением 0,6 В число диодов в каждой ветви составляет примерно 13. Всего для 2-х ветвей 26 диодов.

Технические характеристики такой системы защиты будут весьма высоки. Порог срабатывания составляет 8 В. Максимальный уровень ограничения мощности на защищаемой цепи при токе через диоды 10 А — около 30 Вт. Начальная мощность, поглощаемая системой защиты, составляет примерно 4+4 Вт, максимальная при токе 10 А и использовании теплоотвода — до 130 Вт.

При выборе диодов предпочтительнее те из них, которые допускают максимальные токи 20…30 А при падении напряжения на них 1 В. К ним относятся: КД2994.

Они значительно дороже, чем КД213, но имеют существенно лучшие для наших целей характеристики. Так, пороговое напряжение у них выше и составляет около 0,7 В, а падение напряжение при токе 20 А составляет всего1,1 В. Кроме того, их корпус более удобен для монтажа на печатной плате и крепления теплоотвода.

При использовании в вышеприведённом расчёте КД2994 (вместо КД213) их число в ветвях уменьшится с 13 до11, что от части компенсирует высокую стоимость. Характеристика устройства защиты будет гораздо более пологой: при токе через диоды 10 А уровень ограничения мощности на защищаемой цепи составит уже не 30, а только 12 Вт. При этом система защиты будет поглощать мощность порядка 100+100 Вт.

Применение описанной схемы в тракте звуковоспроизведения высокой верности, особенно если выходной каскад УМЗЧ работает в чистом классе А, позволяет полностью избавится от искажений, вносимых обычными устройствами защиты.

Наиболее целесообразно использовать предложенную систему для защиты относительно маломощных АС и излучателей. Однако при наличии соответствующих средств и свободного места в АС её можно рекомендовать и для защиты НЧ излучателей.

Правда, при этом нужно будет увеличить число параллельно включенных диодных ветвей. Так, при включении в параллель 2-х одинаковых диодных ветвей поглощаемая системой защита мощность увеличивается в 2 раза.

Устройство задержки включения и защиты громкоговорителей


Принципиальная схема этого устройства показана на рисунке 10. Оно состоит из входного ФНЧ R1R2С1, реле времени на транзисторе VT1 и элементах R1 — R4, С1 и ключа на транзисторе VT2.

В момент включения питания конденсатор С1 начинается заряжаться через резисторы R1, R2. В течении времени его зарядки транзистор VT1 будет открыт, VT2 закрыт и ток через обмотку реле не потечёт.

Рис. 10. Схема устройства задержки включения и защиты громкоговорителей, собрано на двух транзисторах.

Резистор R3 устраняет влияние базового тока транзистора VT1 на зарядку конденсатора и увеличивает положительный порог срабатывания устройства защиты.

Когда конденсатор зарядится, напряжение на базе транзистора VT1 упадёт и он закроется, а связанный с ним ключевой транзистор VT2 откроется и через обмотку реле К1 потечёт ток. Реле сработает, и его замкнувшиеся контакты К1.1 и К1.2 подключат громкоговорители к усилителю. Задержка включения равна примерно 4 с.

Если на каком-то из выходов усилителя появится постоянное напряжение положительной полярности, это приведёт к частичной разрядке конденсатора С1, открыванию транзистора VT1 и закрыванию транзистора VT2.

В результате ток через обмотку реле прекратится и его контакты отключат громкоговорители от усилителей. Если же на выходах последних появится постоянное напряжение отрицательной полярности, то оно непосредственно через диод VD1 поступит на базу транзистора VT2, закроет его и таким образом обесточит реле К1, контакты К1.1, К1.2 которого разомкнутся и снова отключат громкоговорители от усилителя. Диод VD1, VD2 ограничивают максимальное отрицательное напряжение на базе входного транзистора VT1 на уровне 1,3 В.

Хотя и в режиме защиты громкоговорителей, и в режиме задержки их включения конденсатор С1 заряжается через одни и те же цепи, время срабатывания защиты на порядок меньше, поскольку для этого конденсатор должен изменить свой потенциал всего на несколько вольт. Пороги срабатывания защиты составляют не более +-4 В.

Правильно изготовленное устройство начинает работать сразу и настройки не требует. Диоды можно применить любые кремниевые. Остальные элементы желательно применить те, которые указаны в схеме.

Реле К1 — РЭС-9, паспорт РС4.524.200 с сопротивлением обмотки примерно 400 Ом. Подойдёт и любое другое реле, срабатывающее при выбранном напряжении питания, но в этом случае нужно подобрать резистор R4, от которого зависит отрицательный порог срабатывания защиты.

Устройство работоспособно при изменении напряжения питания в пределах 20…30 В. При другом напряжении питания нужно будет изменить сопротивление резистора R4.

Недостаток этого устройства — необходимость питания его от источника с пульсациями не более 1 В, иначе возможны ложные срабатывания.

Литература:

  1. Войшилло А. — “О способах включения нагрузки усилителей НЧ” Радио 1979 № 11 с. 36, 37;
  2. Корнев И. “Защита громкоговорителей” Радио’1960 № 5 с. 28;
  3. Роганов В. “Устройство защиты громкоговорителей” Радио’1981 № 11 с. 44, 45; 1982 № 4 с. 62;
  4. “Устройства защиты громкоговорителей” Радио’1983 № 2 с. 61;
  5. Барабошкин Д. “Блок защиты усилителя мощности” Радио’1983 №8 с. 62, 63;
  6. Решетников О. “Устройство защиты на оптронах” Радио’1984 № 12 с. 53;
  7. “Устройства защиты громкоговорителей” Радио’1986 № 10 с. 56-58.

Данный проект защиты акустики повзаимствован на одном из португальских сайтов. Кроме защиты от постоянки блок обеспечивает задержку подключения колонок к выходу усилителя мощности примерно от 3 до 10 секунд, устраняя при этом щелчки при включении питания усилителя. Принципиальная схема:

В схеме применены реле на напряжение 12 Вольт с одной группой переключающихся контактов, способных держать ток 6…8 Ампер.

В статье оригинале были приведены следующие изображения печатной платы:

И вид платы PCB формата:

Используя данные изображения мы нарисовали плату защиты в программе Sprint Layout. LAY6 формат выглядит так:

Фото-вид печатной платы защиты акустики LAY6 формата:

Фольгированный стеклотекстолит односторонний. Размер платы мы чуток уменьшили, теперь он стал 45 х 75 мм.

В качестве блока питания схемы применен обычный параметрический стабилизатор, напряжение стабилизации 12 Вольт. Схема показана ниже:

Надеемся для вас не составит труда расчитать номинал токоограничивающего резистора для стабилитрона, на схеме он указан стрелкой. Его номинал будет зависеть от того, какое напряжение у вас будет после диодного моста. Так же БП можно реализовать на LM7812.

Подключение блока защиты и акустики к усилителю мощности показано на следующем изображении:

Список элементов схемы блока защиты акустики:

Реле 12 Вольт — 2 шт.
Транзисторы 2SC945 — 2 шт.
Транзистор 2SC9013 – 1 шт.
Диоды 1N4007 – 5 шт.
Электролитические конденсаторы 220 uF/ 50V – 2 шт.
Резисторы 10 кОм – 4 шт.
Резистор 1 кОм – 1 шт.
Резистор 39 кОм – 1 шт.
Разъемы 2 Pin – по усмотрению
Подстроечный резистор 220…500 кОм – 1 шт.
Стабилитрон 12 Вольт 1 Ватт – 1 шт. (например импортный 1N4742A)

Плата блока защиты акустики в сборе:

Ссылка на скачивание архива со схемой и печатной платой LAY6 формата появится на этой же странице после клика по любой строке рекламного блока ниже кроме строки “Оплаченная реклама”. Размер файла – 0,3 Mb.

Защита акустических систем от постоянного напряжения на выходе усилителя под названием «Бриг» (скопированная из одноименного усилителя выпускавшегося советской промышленностью) уже долгие годы знакома многим радиолюбителям. За эти долгие годы данная схема зарекомендовала себя с лучшей стороны спасая сотни и тысячи акустических систем. Схема отличается надежностью и простотой.

Схема представленная мной ниже является одной из вариаций на тему «бриговской» защиты. Скелет схемы остался прежним. Изменения коснулись лишь номиналов схемы и моделей транзисторов.

Технические характеристики схемы:
Напряжение питания: +27 … +65В
Время задержки подключения АС: 2 секунды
Входная чувствительность по постоянному напряжению: +/- 1,5В

Широкий предел питающих напряжений обеспечивается применением в цепи питания стабилизатора напряжения на VD5, VD6, R13 и транзисторе VT5. На транзистор VT5 необходимо установить небольшой теплоотвод. Если значительно увеличить площадь теплоотвода и заменить транзистор VT5 на BD139 можно поднять максимальное напряжение питания до +120В.

В качестве драйвера реле используется составной транзистор, что позволило отказаться от дополнительного маломощного транзистора и немного сэкономить место на плате. В качестве драйверного транзистора реле (VT3 VT4) можно применять и другие составные транзисторы, например: BD875 или КТ972. Перед заменой транзисторов на аналогичные следует свериться с их цоколевкой т.к. она не совпадает у всех перечисленных транзисторов.

Транзисторы VT1 и VT2 можно заменить на BC546-BC548 или КТ3102. Так же не забываем про цоколевку, как и прошлом случае.

VD3 и VD4 необходимы для того чтобы избежать помех при коммутации контактов реле. VD1 и VD2 необходимы для защиты VT1 и VT2 соответственно, от пробоя БЭ перехода при наличии на входе схемы отрицательного напряжения менее -15В.

Схема так же обеспечивает задержку подключения акустической системы (АС) на 1-2 секунды. Это необходимо для того, чтобы в момент включения усилителя из АС не раздавалось хлопка или других неприятных звуков сопровождающих переходные процессы в усилителе. За время задержки подключения АС отвечает конденсатор С3 и С4. Чем больше их емкость, тем больше время задержки подключения акустики. С номиналами указанными на схеме, время задержки составляет около 2 секунд.

Реле необходимо применять с управляющей обмоткой 24В, 15мА и на ток не менее выходного тока усилителя. Я применил реле — Tianbo HJR-3FF-S-Z.

Фотография готового устройства

Список радиоэлементов
Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1, VT2 Биполярный транзистор

2N5551

2 BC546-BC548 или КТ3102 В блокнот
VT3, VT4 Биполярный транзистор

BDX53

2 BD875 или КТ972 В блокнот
VT5 Биполярный транзистор

BD135

1 В блокнот
VD1-VD4 Выпрямительный диод

1N4148

4 В блокнот
VD5 Стабилитрон

1N4742

1 В блокнот
VD6 Стабилитрон

1N4743A

1 В блокнот
C1, C2 47 мкФ 2 В блокнот
C3-C5 Электролитический конденсатор 220 мкФ 3 В блокнот
R1, R5 Резистор

1 кОм

2 В блокнот
R2, R6, R13 Резистор

1.5 кОм

3 В блокнот
R3, R7 Резистор

4.3 кОм

2 В блокнот
R4, R8 Резистор

Схема задержки включения динамиков с усилителя. Радио для всех

Защита акустических систем от постоянного напряжения на выходе усилителя под названием «Бриг» (скопированная из одноименного усилителя выпускавшегося советской промышленностью) уже долгие годы знакома многим радиолюбителям. За эти долгие годы данная схема зарекомендовала себя с лучшей стороны спасая сотни и тысячи акустических систем. Схема отличается надежностью и простотой.

Схема представленная мной ниже является одной из вариаций на тему «бриговской» защиты. Скелет схемы остался прежним. Изменения коснулись лишь номиналов схемы и моделей транзисторов.

Технические характеристики схемы:
Напряжение питания: +27 … +65В
Время задержки подключения АС: 2 секунды
Входная чувствительность по постоянному напряжению: +/- 1,5В

Широкий предел питающих напряжений обеспечивается применением в цепи питания стабилизатора напряжения на VD5, VD6, R13 и транзисторе VT5. На транзистор VT5 необходимо установить небольшой теплоотвод. Если значительно увеличить площадь теплоотвода и заменить транзистор VT5 на BD139 можно поднять максимальное напряжение питания до +120В.

В качестве драйвера реле используется составной транзистор, что позволило отказаться от дополнительного маломощного транзистора и немного сэкономить место на плате. В качестве драйверного транзистора реле (VT3 VT4) можно применять и другие составные транзисторы, например: BD875 или КТ972. Перед заменой транзисторов на аналогичные следует свериться с их цоколевкой т.к. она не совпадает у всех перечисленных транзисторов.

Транзисторы VT1 и VT2 можно заменить на BC546-BC548 или КТ3102. Так же не забываем про цоколевку, как и прошлом случае.

VD3 и VD4 необходимы для того чтобы избежать помех при коммутации контактов реле. VD1 и VD2 необходимы для защиты VT1 и VT2 соответственно, от пробоя БЭ перехода при наличии на входе схемы отрицательного напряжения менее -15В.

Схема так же обеспечивает задержку подключения акустической системы (АС) на 1-2 секунды. Это необходимо для того, чтобы в момент включения усилителя из АС не раздавалось хлопка или других неприятных звуков сопровождающих переходные процессы в усилителе. За время задержки подключения АС отвечает конденсатор С3 и С4. Чем больше их емкость, тем больше время задержки подключения акустики. С номиналами указанными на схеме, время задержки составляет около 2 секунд.

Реле необходимо применять с управляющей обмоткой 24В, 15мА и на ток не менее выходного тока усилителя. Я применил реле — Tianbo HJR-3FF-S-Z.

Фотография готового устройства

Список радиоэлементов
Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1, VT2 Биполярный транзистор

2N5551

2 BC546-BC548 или КТ3102 В блокнот
VT3, VT4 Биполярный транзистор

BDX53

2 BD875 или КТ972 В блокнот
VT5 Биполярный транзистор

BD135

1 В блокнот
VD1-VD4 Выпрямительный диод

1N4148

4 В блокнот
VD5 Стабилитрон

1N4742

1 В блокнот
VD6 Стабилитрон

1N4743A

1 В блокнот
C1, C2 47 мкФ 2 В блокнот
C3-C5 Электролитический конденсатор 220 мкФ 3 В блокнот
R1, R5 Резистор

1 кОм

2 В блокнот
R2, R6, R13 Резистор

1.5 кОм

3 В блокнот
R3, R7 Резистор

4.3 кОм

2 В блокнот
R4, R8 Резистор

Проверили его работоспособность, оценили качество звука основного канала. Самое время добавить в него модуль защиты от случайных замыканий, чтоб вся работа не пошла лесом, из-за неизбежных случайностей в процессе его эксплуатации. Также соберём остальные маломощные каналы УНЧ, для подключения тыловых колоночек.

ЗАЩИТА АС УМЗЧ


Изначально задумал использовать схему защиты от БРИГ , но затем читая отзывы о симисторной защите захотел попробовать ее. Блоки защиты были сделаны в самом конце, тогда было туго с финансами, а симисторы и прочие компоненты схемы у нас оказались довольно дороги, поэтому вернулся к релейной защите. Напоминаю, что все схемы находятся обзора.

В итоге были собраны три блока защиты, один из них для сабвуферного усилителя, а два остальных для каналов ОМ.


В сети можно найти большое количество схем блоков защиты, но эта схема перепробована мной неоднократно. При наличии постоянного напряжения на выходе (выше допустимого) защита мгновенно срабатывает спасая динамическую головку. После подачи питания реле замыкается, а при срабатывания схемы оно должно размыкаться. Защита включает головку с небольшой задержкой — это тоже в свою очередь, является дополнительной страховкой и щелчок после включения, почти не слышен.


Компоненты блока защиты могут отклоняться от указанного, Основной транзистор можно заменить на наш КТ815Г , использовал высоковольтные транзисторы MJE13003 — их у меня навалом, кроме того, они довольно мощные и не перегреваются в ходе работы, поэтому в теплоотводе не нуждаются. Маломощные транзисторы можно заменить на S9014, 9018, 9012 , даже на КТ315 , оптимальный вариант — 2N5551 .


Реле на 7-10 Ампер, подобрать можно любое реле на 12 или 24 Вольта, в моем случае на 12 Вольт.


Блоки защиты для каналов ОМ установлены возле трансформатора второго инвертора, работает все это дело довольно четко, при максимальной громкости защита может сработать (ложно) крайне редко.

МАЛОМОЩНЫЕ УСИЛИТЕЛИ


Долго решал какой усилитель использовать для маломощных акустических систем. Как дешевый вариант вначале решил использовать микросхемы TDA2030 , потом подумал, что 18-ти ватт на канал маловато и перешел к TDA2050 — умощненный аналог на 32 ватта. Затем сравнив звучание основных вариантов выбор впал на любимую микросхему — LM1875 , 24 ватта и качество звучания на 2-3 порядка лучше, чем у первых двух микросхем.


Долго копался в сети, но печатную плату под свои нужды так и не нашел. Сидя за компом несколько часов была создана своя версия для пятиканальноо усилителя на микросхемах LM1875 , плата получилась довольно компактной, на плате также предусмотрен блок выпрямителей и фильтров. Этот блок был полностью собран за 2 часа — все компоненты к тому времени имелись в наличии.


ВИДЕО УСИЛИТЕЛЯ


Качество звучания этих микросхем на очень высоком уровне, в конце концов разряд Hi-Fi , отдаваемая мощность приличная — 24 ватта синуса, но в моем случае мощность повышена путем повышения питающего напряжения до 24-х вольт, в таком случае можно получить порядка 30 ватт выходной мощности. На основной плате усилителя у меня было предусмотрено место для 4-х канального усилителя на TDA2030 , но чем-то оно мне не понравилось…


Плата для LM крепится на основную плату УНЧ через стойки в виде трубок и болтов. Питание для этого блока берется со второго инвертора, предусмотрена отдельная обмотка. Выпрямитель и фильтрующие конденсаторы расположены непосредственно на плате усилителя. В качестве выпрямительных диодов уже традиционные КД213А .

Дросселей для сглаживания ВЧ помех не использовал, да и нет нужды их применять, поскольку даже в довольно брендовых автомобильных усилителях их часто не ставят. В качестве теплоотвода использовал набор дюралюминиевых болванок 200х40х10 мм.


На плату также укреплен кулер, который одновременно отводит теплый воздух с этого блока и отдувает теплоотводы инверторов. С электроникой аудиокомплекса полностью разобрались — переходим к С уважением — АКА КАСЬЯН .

Обсудить статью ДОМАШНИЙ УСИЛИТЕЛЬ — УНЧ И БЛОК ЗАЩИТЫ

Рассмотрены несколько различных схем устройств. предназначенных для защиты акустических систем (АС) и реализации задержки по времени перед подключением АС к выходу усилителя мощности звуковой частоты.

Схема защиты и задержки включения на четырех транзисторах

Приведённое устройство предназначено для задержки подключения громкоговорителей на время переходных процессов в УМЗЧ при включении питания и отключении их при появлении на его выходе постоянного напряжения любой полярности.

Рис. 1. Принципиальная схема устройства защиты акустических систем и задержки включения, выполнена на четырех транзисторах.

Принципиальная схема устройства приведена на рис.1. Оно состоит из диодного распределителя (VD1 — VD6) и электронного реле на транзисторах VT1 — VT4.

К выходам каналов УМЗЧ оно подключается вместе с громкоговиортелями через контакты реле К1. Цепи R1C1, R2C2 предотвращают срабатывание устройства на колебания звуковой частоты.

При необходимости число контролируемых каналов можно увеличить простым подключением соответствующего числа дополнительных цепей, аналогичных цепи R1C1VD1VD2, и применением электромагнитного реле с большим числом контактных групп. Постоянное напряжение на выходе УМЗЧ, при котором срабатывает устройство защиты, определяется напряжением стабилизациистабилитрона VD7 и связано с ним соотношением:

При включении питания (источником напряжения может быть блок питания УМЗЧ) начинает заряжаться (через резистор R9) конденсатор С3, поэтому транзистор VT4 закрыт и реле К1 обесточено.

По мере зарядки напряжение на конденсаторе растёт, транзистор VT4 начинает открываться и через некоторое время (примерно 3с) его эмиттерный ток возрастает на столько, что реле К1 срабатывает и подключает громкоговорители к выходу УМЗЧ.

Транзисторы VT1 — VT3 в исходном состоянии также закрыты. При появлении на выходе любого из каналов напряжения любой полярности, превышающее указанное выше значение , открывается транзистор VT2, а вслед за ним VT1, VT3. В результате конденсатор С3 разряжается через участок эмиттер-коллектор транзистора VT3 и резистор R8, транзистор VT4 закрывается и реле К1 отключает громкоговорители и вход устройства от выхода УМЗЧ.

Транзистор VT1, осуществляющий положительную обратную связь в каскаде на транзисторе VT2, играет роль “защёлки”, поддерживая последний в открытом состоянии и после отключения устройства от выхода УМЗЧ: не будь его, после пропадания напряжения на входе и закрывания транзистора VT2, VT3 вновь началась бы зарядка конденсатора С3 и по истечении времени зарядки громкоговорители снова подключились бы к УМЗЧ.

В устройстве применено реле РЭС-9 (паспорт РС4.524.200). Транзисторы КТ603б (VT3,VT4) могут быть заменены на КТ315г. Для питания устройства используется источник питания 20В.

При большом напряжении из-за обратных токов коллекторов возможно самопроизвольное открывание транзисторов VT1,VT2. Чтобы этого не случилось, необходимо уменьшить сопротивление резисторов R5, R6. Если же напряжение питание больше 30 В, в устройстве следует использовать транзисторы с допустимым напряжением коллектор-эмиттер не менее.

При снижении напряжения (заменой стабилитрона Д814а) необходимо позаботится о том, чтобы амплитуда переменного напряжения низших частот на выходах фильтров R1C1, R2C2 не достигала значений, вызывающих отключение громкоговорителей. Сделать это не трудно — достаточно увеличить постоянные времени названых цепей (например увеличить С1, С2).

Схема улучшенной защиты для АС

Большими возможностями обладает устройство защиты рис.2.

Рис. 2. Принципиальная схема защиты акустических систем от бросков выходного напряжения, питается от источника питания УМЗЧ.

Оно предохраняет громкоговорители от бросков выходного напряжения как при включении, так и при выключении питания, при неисправности УМЗЧ и в моменты вероятного отказа последнего — при понижении или полном исчезновении одного или обоих напряжений питания, а также при превышении ими предельно допустимых значении (это может иметь место при питании от стабилизированных источников) и, наконец, отключает их при подсоединении головных стерео телефонов. Питается устройство от того же двуполяного источника, что и выходные каскады УМЗЧ.

В момент включения питания начинает заряжаться конденсатор С3, поэтому транзистор VT2 открыт, VT3 закрыт, реле К1 обесточено и громкоговорители отключены. Как только напряжение на конденсаторе достигает значения

Напряжение стабилизации стабилитрона VD9), состояния указанных транзисторов изменяются на обратные, срабатывает реле К1 и громкоговоритель подключаются к выходам каналов УМЗЧ.

Приведенная формула справедлива при условии: .

Время задержки при указанных на схеме номиналах элементов: .

Напряжение стабилизации стабилитрона VD11 выбрано из условия .

При понижении напряжении любого источника питания на величину, большую чем транзистор VT3 закрывается и реле К1 отключает громкоговорители от УМЗЧ.

Стабилитроны VD7 и VD9 в цепях баз соответственно транзисторов VT1, VT2 одинаковы и выбраны с учётом следующего. Как видно из схемы, для того, чтобы открылся транзистор VT2 (а следовательно, закрылся транзистор VT3 и отпустило реле К1), напряжение питания должно удовлетворять условию:

Где и — соответственно напряжение и минимальный ток стабилизации стабилитрона VD9.

Отсюда: . При указанных на схеме номиналах и типах деталей

А это значит, что при устройство отключит громкоговорители, если отрицательное напряжение питания возрастёт (по отношению к номинальному) на 2,8 В.

Транзистор VT1 открывается по цепи VD1 — R5 — VD7, идентичной цепи VD6 — R7 — VD9. Это приводит к открыванию транзистора VT2 и закрыванию транзистора VT3, т.е. к отключению громкоговорителей при увеличении на 8 В напряжения питания положительной полярности.

В случае появления на выходе УМЗЧ постоянного положительного напряжения транзистор VT2 открывается током протекающим через резистор R3 (или R4), VD4 (VD5) и цепь R7VD9. Условие его открывания в этом случае выглядит так:

Если же напряжение на выходе УМЗЧ имеет отрицательную полярность, по цепи R3 (R4) — VD2 (VD3) — R5 — VD7 открывает транзистор VT1.

Для подключения стереотелефонов служит розетка ХS1, с которой механически связан выключатель SA1. При установке вилки стереотелефонов в розетку контакты выключателя размыкаются, реле К1 отпускает и громкоговорители отключаются от УМЗЧ.

То же происходит и при выключении питания УМЗЧ кнопкой SB1 (А1 — источник питания). Поскольку коллекторная цепь транзистора VT3 и цепь сетевого питания разрываются практически одновременно, громкоговорители отключаются до начала переходного процесса и щелчок не прослушивается.

В устройстве применено реле РЭС-22 (паспорт РФ-4.500.130). Неполярные оксидные конденсаторы С1, С2 — К50-6. Транзистор КТ815В можно заменить любым другим с допустимым напряжением коллектор — эмиттер более 50 В и максимальным током коллектора ни менее значения , где — — сопротивление обмотки реле К1).

Вместо стабилитронов КС527А можно использовать КС482А, КС510А, КС512А, КС175Ж, КС182Ж, КС191Ж и т.п., соединив нужное число приборов для получения напряжения стабилизации, выбранного приведённым формулам. Диоды VD1 — VD6, VD8, VD10, VD12 — любые кремниевые маломощные с обратным напряжением более 50 В.

Схема защиты АС которая питается от сигнала ЗЧ

Оригинальные устройства защиты громкоговорителей (рис.3) питается напряжением сигнала звуковой частоты, что позволяет встроить его в громкоговоритель.

Устройство отключает последний при перегрузке по мощности, а также в случае появления на выходе УМЗЧ постоянного напряжения любой полярности. В схеме использованы громкоговорители мощностью 10 Вт и электрическим сопротивлением 4 Ом.

Рис. 3. Принципиальная схема защиты акустической колонки, которая питается от сигнала ЗЧ.

В исходном состоянии реле К1 обесточено и сигнал ЗЧ (звуковой частоты) с выхода усилителя поступает через контакты К1.1 на громкоговоритель. Одновременно он выпрямляет мостом VD1 — VD4, и его постоянная составляющая через нормально замкнутые контакты К1.2 подводится к пороговому устройству, выполненному на транзисторе VT1 и микросхеме DA1.

Пока напряжение входного сигнала не превышает порога срабатывания, транзистор закрыт и напряжение на выводе 12 микросхемы DA1 равно напряжению стабилизации стабилитрона VD6, что больше напряжения образцового источника микросхемы, которое может находиться в пределах 1,5 …3 В. (Стабилитрон VD6 предотвращает пробой эмиттерного перехода транзистора дифферинциального каскада микросхемы обратным напряжением).

В момент, когда входной сигнал достигает уровня срабатывания устройства (напряжение на движке подстроечного резистора R5 — около 1,5 В), транзистор VТ1 открывается и напряжение на выводе 12 микросхемы DA1 становится меньше образцового.

В результате открывается регулирующий транзистор микросхемы, срабатывает реле К1 и громкоговоритель отключается от УМЗЧ, а обмотка реле подключается непосредственно к выходу выпрямительного моста VD1 — VD4.

При уменьшении выпрямленного напряжения до напряжения опускания реле устройство возвращается в исходное состояние. Аналогично ведёт себя устройство и при появлении на выходе УМЗЧ постоянного напряжения.

Порог срабатывания устанавливают подсроечным резистором R6. Конденсатор С3 предотвращает срабатывание устройства при кратковременном превышении сигналом порога срабатывания.

Минимальное напряжение сигнала, при котором устройство работоспособно, определяется напряжением срабатывания реле. В случае использывания реле РЭС-47 (паспорт РФ4.500.407-04) и деталей с указанными на схеме номиналами оно не превышает 5 В. Стабилитрон VD8 ограничивает напряжение на обмотке реле.

При отсутствии микросхемы К142ЕН1А можно применить К142ЕН1, К142ЕН2 с любым буквенным индексом. Диоды КД522Б можно заменить любым другим с обратным напряжением более 40 В, прямым током не менее 100 мА и максимальной частотой (КД51А, диодные сборки серии К542 и т.п.), стабистор КС107А — любым кремниевым диодом, транзистор КТ3412Б — любым маломощным кремниевым транзистором структуры n-p-n с допустимым напряжением коллектор — эмиттер не менее 40 В.

При изготовлении устройства для защиты громкоговорителей мощных звуковоспроизводящих устройств следует использовать диоды КД204А — КД204В, КД212А, КД212Б, КД213А, КД213Б и т.п., заменить реле РЭС-47 другим, с контактами, допускающими коммутацию больших токов, а если необходимо, и «умощнить» микросхему DA1 внешних транзисторов для обеспечения необходимого тока через обмотку реле.

Может случиться, что в момент срабатывания устройства будет возникать дребезг контактов реле. Предотвратить его можно, включив конденсатор ёмкостью 10…20 мкФ между выводами 16 и 8 микросхемы DA1 или резистор сопротивлением 1 кОм между её выводом 13 и базой транзистора VT1 (создав, таким образом, положительную обратную связь).

Схема защиты АС с применением резисторнорго оптрона

Предлагаемое устройство (рис.4)

Рис. 4. Принципиальная схема защиты акустических систем с применением резисторнорго оптрона.

обеспечивает защиту акусических систем (АС) от повреждения при появлении на выходах стереофонического усилителя постоянного напряжения положительной или отрицательной полярности.

Функции исполнительного элемента защиты выполняет резисторный оптрон U1. Работает он следующим образом. При появлении отрицательного или положительного постоянного напряжения на любом из выходных усилителей звуковой частоты (УЗЧ) через опрон начинает протекать входной ток и сопротивление его резистора резко уменьшается.

Как только величина постоянного напряжения достигнет 3-4 В (в зависимости от экземпляра оптрона), сопротивление это становится столь малым, что транзисторы VT1, VT2 закрываются, обмотка реле К1 обесточиваются и его контакты К1.1, К1.2 отключают АС от УЗЧ.

Стабилитроны VD1, VD2 ограничивают входной ток оптрона величиной 18 мА. Поскольку для стабилитронов Д815А допускается разброс напряжения стабилизации 15%, необходимо подобрать такие экземпляры, чтобы напряжение прикладываемое к светоизлучателю оптрона не превышало 5,5 В.

Дроссели L1, L2 ограничивают переменную составляющую входного тока оптрона до величины исключающей возможность срабатывания защиты. Они выполнены на магнитопроводах ШЛ12*12 и содержат по 1200 витков провода ПЭЛ-0,23. активное сопротивление каждого дросселя 36 Ом.

За счёт большого времени зарядки конденсатора С1 через резистор R1 обеспечивается задержка открывания транзисторов VT1, VT2, срабатывания реле К1 и подключения АС к усилителю.

В результате переходных процессов, возникающие в усилителе после его включения, затухают раньше, чем устройство подключит АС, поэтому щелчок в них не прослушивается.

При включении питания усилителя выключателем 8В1 контакты 1 и 4 последнего замыкаются, вызывая мгновенное закрывание транзисторов VT1, VT2. Естественно АС открывается от усилителя до начала в нём переходных процессов и щелчок в громкоговорителе также не будет слышен.

Устройство защиты АС питается от 2-хполярного источника питания усилителя мощности. При выборе элементов VT1, VT2, C1, R2, K1 следует учитывать величину напряжения источника.

При использовании реле РЭС-9, РЭС-22 устройство защиты можно дополнить системой сигнализации его срабатывания.(рис.5)

Рис. 5. Схема дополнения устройства защиты АС световой сигнализацией.

Описанное устройство разрабатывалось для конкретного усилителя с напряжением питания равным плюс-минус 15 В. В этом случае при появлении на одном из выходов усилителя максимальное напряжение, тепловая мощность, выделяемая на дросселях L1 или L2, не превышает 3 Вт, что исключает его значительный перегрев за время в течении которого может быть сделан вывод о неисправности усилителя мощности (УМ) и принято решение о его выключении.

Второй вариант схемы защиты с оптроном

При более высоком напряжении питания и отсутствии гарантий своевременного обнаружения момента срабатывания устройства защиты его можно собрать по несколько изменённой схеме (рис.6).

Рис. 6. Принципиальная схема устройства защиты акустических колонок, питание от -30 +30В.

В этом случае в момент срабатывания системы защиты питание усилителя мощности отключается. Светоизлучатель оптрона контактами К1.3 реле К1 подключается к источнику питания усилителя, что позволяет удерживать устройство защиты в режиме «Авария».

Кроме того, при отсутствии одного из напряжений 2-хполярного источника питания устройство защиты не подключает к нему УМ и отключает его, если одно из этих напряжений исчезнет. Загорание светодиодов сигнализирует о неисправности в усилителе или источнике питания.

В устройстве, собранном по схеме рис.3, реле К1 должно иметь 4 группы контактов на перелючение (РЭС-22, паспорт РФ4.500.130). Следует отметить, что такая схема системы защиты функции предотвращения щелчков в АС утрачивает.

Схема защиты АС, отключающая усилитель ЗЧ от сети

На рис.7 представлена схема устройства защиты АС , отключает усилитель от питающей сети.

Рис. 7. Принципиальная схема защиты акустических систем, отключающая усилитель ЗЧ от сети 220В.

Для включения усилителя нужно нажать кнопку SB1. При этом напряжение питания поступит на устройство защиты, срабатывает реле К1 и его контакты заблокируют кнопку SB1 так, что при её отпускании УМ остаётся подключенным к источнику питания.

Для отключения усилителя необходимо нажать кнопку SB2. Принцип этого устройства аналогичен описанному выше. Он срабатывает и отключает усилитель от сети при появлении постоянного напряжения на одном из его выходов или пропадании напряжения питания.

Кнопки SB1, SB2 без фиксации в нажатом положении КМ21, КМД2-1, а реле К1-РЭС-32, паспорт РФ 4.500.335-02 (или РЭС-22, паспорт РФ 4.500.130).

Пассивная система защиты для громкоговорителя

Наиболее распространённый способ защиты акустических систем от опасного перенапряжения — их отключение от источника сигнала с помощью электромагнитного реле.

Однако в АС высокого класса применять его нецелесообразно из-за нелинейных искажений, вносимых в воспроизводимый сигнал. Дело в том, что контакты реле имеют собственное активное сопротивление, которое в новых изделиях колеблется от 0,1 (в лучшем случае) до 0,5 Ом.

В результате при прохождении через них электрического тока значительной величины на них рассеивается большая тепловая мощность. Это вызывает окисление металла, из которого изготовлены контакты, что само по себе уже является источником искажений.

Кроме того, в процессе эксплуатации реле окисление увеличивается и сопротивление контактов может возрасти до1 Ома и более, что соизмеримо с сопротивлением самих АС и способно уменьшить их отдачу.

В другом варианте защиты АС при появлении на них опасного перенапряжения выходы УМЗЧ подключается к общему проводу с помощью тиристора до момента срабатывания плавкого предохранителя в цепи питания выходного каскада.

Однако и этот способ имеет существенные недостатки, так как представляет определённую опасность для самого УМЗЧ и связан с необходимостью замены предохранителей.

В ряде зарубежных АС используется поликристаллические элементы, специально разработанные для защиты ВЧ и СЧ головок, но они вносят в сигнал ещё большие искажения и также не могут быть использованы в АС высокого класса.

Предложенное устройство пассивной защиты громкоговорителей представляет собой мощный диодный симметричный ограничитель сигнала звуковой частоты (рис. 8).

Рис. 8. Мощный диодный симметричный ограничитель сигнала звуковой частоты.

Выполнен он в виде 2-хполюсника, включаемого параллельно защищаемой цепи: либо АС в целом, либо какую-то из её излучателей, например, ВЧ или СЧ головке. В последнем случае его устанавливают непосредственно в АС, а в первом он может быть размещён и на выходе УМЗЧ, и в самой АС.

Устройство работает следующим образом. При появлении на его выводах напряжения, превышающего установленный порог ограничения, диоды соответствующей ветви открываются и через них начинает протекать ток.

На диодах рассеивается определённая тепловая мощность, а сигнал, поступающий на АС или излучатель, мягко ограничивается по напряжению и соответственно по мощности.

При уменьшении поступающего на АС напряжения ниже порога срабатывания устройство оно отключается. В ждущем режиме устройство защиты на звуковую частоту не влияет, поскольку в этом случае диоды обеих ветвей закрыты, а их результирующая ёмкость ничтожно мала.

В устройстве следует применять мощные выпрямительные диоды с высокой перегрузочной способностью, повышенной максимальной рабочей частотой и небольшой собственной ёмкостью. из наиболее распространённых можно порекомендовать КД213 с любым буквенным индексом, а также КД2994, КД2995, КД2998, кд2999.

Эти диоды допускают протекание постоянного тока 10..30 А и более в зависимости от типа, а максимальный импульсный ток через них может достигать 100 А.

Без теплоотвода каждый диод способен рассеять электрическую мощность около 1 Вт, что соответствует току порядка 1 А. При установке на простейшие пластинчатые теплоотводы мощность, рассеиваемая каждым диодом, может быть увеличена до 20 Вт. На рис. 9 показана возможная конструкция защитного устройств с использованием пластинчатых теплоотводов.

Рис. 9. Возможная конструкция защитного устройств с использованием пластинчатых теплоотводов.

Из особенностей работы устройства защиты необходимо учитывать следующее. В момент открывания диодов через них протекает небольшой ток. При этом для открывания каждого из диодов необходимо напряжение 0,6…0,7 В в зависимости от его типа.

При дальнейшем увеличении напряжения на гнёздах устройства защиты растёт проходящий ток и соответственно увеличивается падение напряжения на переходах диодов. Величина его может составлять до 1..1,4 В в диапазоне токов до 10…30 А.

Расчёт устройства защиты сводится к определению типа диодов и их числа в каждой ветви. Для этого необходимо определить порог ограничения по мощности и напряжению.

Предположим, что мы хотим защитить от перегрузки динамическую головку с номинальной мощностью 10 Вт и нормальным сопротивлением 8 Ом.

При этом целесообразно определить напряжение на уровне мощности порядка 8 Вт. Тогда через головку должен протекать ток равный 1 А при подводимом напряжении 8 В.

При использовании диодов КД213 с пороговым напряжением 0,6 В число диодов в каждой ветви составляет примерно 13. Всего для 2-х ветвей 26 диодов.

Технические характеристики такой системы защиты будут весьма высоки. Порог срабатывания составляет 8 В. Максимальный уровень ограничения мощности на защищаемой цепи при токе через диоды 10 А — около 30 Вт. Начальная мощность, поглощаемая системой защиты, составляет примерно 4+4 Вт, максимальная при токе 10 А и использовании теплоотвода — до 130 Вт.

При выборе диодов предпочтительнее те из них, которые допускают максимальные токи 20…30 А при падении напряжения на них 1 В. К ним относятся: КД2994.

Они значительно дороже, чем КД213, но имеют существенно лучшие для наших целей характеристики. Так, пороговое напряжение у них выше и составляет около 0,7 В, а падение напряжение при токе 20 А составляет всего1,1 В. Кроме того, их корпус более удобен для монтажа на печатной плате и крепления теплоотвода.

При использовании в вышеприведённом расчёте КД2994 (вместо КД213) их число в ветвях уменьшится с 13 до11, что от части компенсирует высокую стоимость. Характеристика устройства защиты будет гораздо более пологой: при токе через диоды 10 А уровень ограничения мощности на защищаемой цепи составит уже не 30, а только 12 Вт. При этом система защиты будет поглощать мощность порядка 100+100 Вт.

Применение описанной схемы в тракте звуковоспроизведения высокой верности, особенно если выходной каскад УМЗЧ работает в чистом классе А, позволяет полностью избавится от искажений, вносимых обычными устройствами защиты.

Наиболее целесообразно использовать предложенную систему для защиты относительно маломощных АС и излучателей. Однако при наличии соответствующих средств и свободного места в АС её можно рекомендовать и для защиты НЧ излучателей.

Правда, при этом нужно будет увеличить число параллельно включенных диодных ветвей. Так, при включении в параллель 2-х одинаковых диодных ветвей поглощаемая системой защита мощность увеличивается в 2 раза.

Устройство задержки включения и защиты громкоговорителей


Принципиальная схема этого устройства показана на рисунке 10. Оно состоит из входного ФНЧ R1R2С1, реле времени на транзисторе VT1 и элементах R1 — R4, С1 и ключа на транзисторе VT2.

В момент включения питания конденсатор С1 начинается заряжаться через резисторы R1, R2. В течении времени его зарядки транзистор VT1 будет открыт, VT2 закрыт и ток через обмотку реле не потечёт.

Рис. 10. Схема устройства задержки включения и защиты громкоговорителей, собрано на двух транзисторах.

Резистор R3 устраняет влияние базового тока транзистора VT1 на зарядку конденсатора и увеличивает положительный порог срабатывания устройства защиты.

Когда конденсатор зарядится, напряжение на базе транзистора VT1 упадёт и он закроется, а связанный с ним ключевой транзистор VT2 откроется и через обмотку реле К1 потечёт ток. Реле сработает, и его замкнувшиеся контакты К1.1 и К1.2 подключат громкоговорители к усилителю. Задержка включения равна примерно 4 с.

Если на каком-то из выходов усилителя появится постоянное напряжение положительной полярности, это приведёт к частичной разрядке конденсатора С1, открыванию транзистора VT1 и закрыванию транзистора VT2.

В результате ток через обмотку реле прекратится и его контакты отключат громкоговорители от усилителей. Если же на выходах последних появится постоянное напряжение отрицательной полярности, то оно непосредственно через диод VD1 поступит на базу транзистора VT2, закроет его и таким образом обесточит реле К1, контакты К1.1, К1.2 которого разомкнутся и снова отключат громкоговорители от усилителя. Диод VD1, VD2 ограничивают максимальное отрицательное напряжение на базе входного транзистора VT1 на уровне 1,3 В.

Хотя и в режиме защиты громкоговорителей, и в режиме задержки их включения конденсатор С1 заряжается через одни и те же цепи, время срабатывания защиты на порядок меньше, поскольку для этого конденсатор должен изменить свой потенциал всего на несколько вольт. Пороги срабатывания защиты составляют не более +-4 В.

Правильно изготовленное устройство начинает работать сразу и настройки не требует. Диоды можно применить любые кремниевые. Остальные элементы желательно применить те, которые указаны в схеме.

Реле К1 — РЭС-9, паспорт РС4.524.200 с сопротивлением обмотки примерно 400 Ом. Подойдёт и любое другое реле, срабатывающее при выбранном напряжении питания, но в этом случае нужно подобрать резистор R4, от которого зависит отрицательный порог срабатывания защиты.

Устройство работоспособно при изменении напряжения питания в пределах 20…30 В. При другом напряжении питания нужно будет изменить сопротивление резистора R4.

Недостаток этого устройства — необходимость питания его от источника с пульсациями не более 1 В, иначе возможны ложные срабатывания.

Литература:

  1. Войшилло А. — “О способах включения нагрузки усилителей НЧ” Радио 1979 № 11 с. 36, 37;
  2. Корнев И. “Защита громкоговорителей” Радио’1960 № 5 с. 28;
  3. Роганов В. “Устройство защиты громкоговорителей” Радио’1981 № 11 с. 44, 45; 1982 № 4 с. 62;
  4. “Устройства защиты громкоговорителей” Радио’1983 № 2 с. 61;
  5. Барабошкин Д. “Блок защиты усилителя мощности” Радио’1983 №8 с. 62, 63;
  6. Решетников О. “Устройство защиты на оптронах” Радио’1984 № 12 с. 53;
  7. “Устройства защиты громкоговорителей” Радио’1986 № 10 с. 56-58.

Данный проект защиты акустики повзаимствован на одном из португальских сайтов. Кроме защиты от постоянки блок обеспечивает задержку подключения колонок к выходу усилителя мощности примерно от 3 до 10 секунд, устраняя при этом щелчки при включении питания усилителя. Принципиальная схема:

В схеме применены реле на напряжение 12 Вольт с одной группой переключающихся контактов, способных держать ток 6…8 Ампер.

В статье оригинале были приведены следующие изображения печатной платы:

И вид платы PCB формата:

Используя данные изображения мы нарисовали плату защиты в программе Sprint Layout. LAY6 формат выглядит так:

Фото-вид печатной платы защиты акустики LAY6 формата:

Фольгированный стеклотекстолит односторонний. Размер платы мы чуток уменьшили, теперь он стал 45 х 75 мм.

В качестве блока питания схемы применен обычный параметрический стабилизатор, напряжение стабилизации 12 Вольт. Схема показана ниже:

Надеемся для вас не составит труда расчитать номинал токоограничивающего резистора для стабилитрона, на схеме он указан стрелкой. Его номинал будет зависеть от того, какое напряжение у вас будет после диодного моста. Так же БП можно реализовать на LM7812.

Подключение блока защиты и акустики к усилителю мощности показано на следующем изображении:

Список элементов схемы блока защиты акустики:

Реле 12 Вольт — 2 шт.
Транзисторы 2SC945 — 2 шт.
Транзистор 2SC9013 – 1 шт.
Диоды 1N4007 – 5 шт.
Электролитические конденсаторы 220 uF/ 50V – 2 шт.
Резисторы 10 кОм – 4 шт.
Резистор 1 кОм – 1 шт.
Резистор 39 кОм – 1 шт.
Разъемы 2 Pin – по усмотрению
Подстроечный резистор 220…500 кОм – 1 шт.
Стабилитрон 12 Вольт 1 Ватт – 1 шт. (например импортный 1N4742A)

Плата блока защиты акустики в сборе:

Ссылка на скачивание архива со схемой и печатной платой LAY6 формата появится на этой же странице после клика по любой строке рекламного блока ниже кроме строки “Оплаченная реклама”. Размер файла – 0,3 Mb.

Конструируя схему своего усилителя НЧ я заранее предусмотрел в нем блок защиты акустических систем. Для чего это нужно и что может навредить акустическим системам? — во первых хотелось избавиться от «щелчка» при подаче питания на усилитель.

При включении питания конденсаторы выпрямителя начинают заряжаться что в этот момент сказывается на УНЧ — на акустические системы кратковременно попадает постоянное напряжение. Чтобы избежать этого попадания нужна схема несложного реле времени, которое сделает задержку подключения акустических систем на 0,5-1 секунду.

Во вторых — с УНЧ может случиться всякое, например, от перегрузки может сгореть один из транзисторов в УНЧ и на колонки поступит постоянное напряжение достаточно большой величины, что может спалить НЧ динамическую головку или же вывести из строя часть фильтра ваших колонок. Чтобы исключить подобные инциденты нужна схема контролирующая напряжение на выходе УНЧ и в случае появления проблем отключающая акустические системы от УНЧ.

Принципиальная схема

Я рассмотрел множество схем для защиты АС, хотелось найти универсальный вариант и с минимумом электронных компонентов, из всех схем четко выделилась одна — нашел я ее в журнале РАДИО №5 за 1998 год, автор публикации: Ю. Залиский (г. Львов, Украина).

Кроме того что схема выполняет все пункты, о которых я упоминал выше, она построена с использованием всего двух транзисторов и обеспечивает надежную защиту акустических систем для двух каналов усилителя низкой частоты.

Рис.1. Схема устройства задержки включения и защиты акустических систем (АС).

Описание схемы и журнала

Принципиальная схема устройства задержки включения и защиты АС показана на рисунке выше. Оно состоит из входного ФНЧ R1 R2C1, реле времени на транзисторе VT1 и элементах R1-R4, С1 и ключа на транзисторе VT2.

В момент включения питания конденсатор С1 начинает заряжаться через резисторы R1, R2. В течение времени его зарядки транзистор VT1 будет открыт, VT2 закрыт и ток через обмотку реле не потечет.

Резистор R3 устраняет влияние базового тока транзистора VT1 на зарядку конденсатора и увеличивает положительный порог срабатывания устройства защиты.

Когда конденсатор зарядится, напряжение на базе транзистора VT1 упадет и он закроется, а связанный с ним ключевой транзистор VT2 откроется и через обмотку реле К1 по течет ток.

Реле сработает, и его замкнувшиеся контакты К1.1 и К1.2 подключат громкоговорители к усилителю. Задержка включения равна примерно 4 с.

Если на каком-то из выходов усилителя появится постоянное напряжение положительной полярности, это приведет к частичной разрядке конденсатора С1, открыванию транзистора VT1 и закрыванию транзистора VT2. В результате ток через обмотку реле прекратится и его контакты отключат громкоговорители от усилителей.

Если же на выходах последних появится постоянное напряжение отрицательной полярности, то оно непосредственно через диод VD1 поступит на базу транзистора VT2, закроет его и таким образом обесточит реле К1, контакты К1.1, К1.2 которого разомкнутся и снова отключат громкоговорители от усилителя.

Диоды VD1-VD2 ограничивают максимальное отрицательное напряжение на базе входного транзистора VT1 на уровне 1,3 В. Хотя и в режиме защиты громкоговорителей, и в режиме задержки их включения конденсатор С1 заряжается через одни и те же цепи, время срабатывания защиты на порядок меньше, поскольку для этого конденсатор должен изменить свой потенциал всего на несколько вольт. Пороги срабатывания защиты составляют не более ±4 В.

Правильно изготовленное устройство начинает работать сразу и настройки не требует. Диоды можно применить любые кремниевые. Остальные элементы желательно применить те, которые указаны в схеме. Реле К1— РЭС-9, паспорт РС4.524.200 с сопротивлением обмотки примерно 400 Ом.

Подойдет и любое другое реле, срабатывающее при выбранном напряжении питания, но в этом случае нужно подобрать резистор R4, от которого зависит отрицательный порог срабатывания защиты.

Устройство работоспособно при изменении напряжения питания в пределах 20…30 В. При другом напряжении питания нужно будет изменить сопротивление резистора R4.

Недостаток этого устройства — необходимость питания его от источника с пульсациями не более 1 В, иначе возможны ложные срабатывания.

Замечания по схеме

Теперь добавлю от себя: подтверждаю, для устройства действительно нужен хорошо стабилизированный источник питания иначе будут частые ложные срабатывания.

Для стабилизации я использовал схему стабилизатора с регулировкой напряжения на основе микросхемы КРЕН5 (7805) — в публикации про блок питания для моего УНЧ я о ней рассказал.

В зависимости от того какое напряжение питания схемы (20…30В) придется подобрать реле с обмоткой рассчитанной на данное напряжение срабатывания, здесь главное надежное срабатывание и чтобы катушка не перегревалась от перенапряжения. У себя я нашел пачку РЭС-48 с разными паспортами, полистав справочник я выбрал те что мне подходят по напряжению.

Таким образом при срабатывании защиты транзистор VT2 закроется и напряжение через реле и резистор поступит на светодиод — что будет сигнализировать о срабатывании.

Также при включении схемы, пока работает реле времени, светодиод светится, а потом при переходе защиты в рабочий режим он гаснет. Получается простая индикация, которой вполне достаточно чтобы отследить состояние защиты.

Детали и настройка

Сопротивление гасящего резистора R5* (гасит ток, протекающий через светодиод) подбирается экспериментально. Для этого можно применить переменный резистор на 2-3кОм включенный вместо R5.

Выставляем ручку резистора в положение с максимальным сопротивлением, подаем на схему питание, а на ее вход — постоянное напряжение от другого блока питания, чтобы схема сработала и реле обесточилось.

Вращая ручку переменного резистора нужно добиться достаточно яркого свечения светодиода VD4 в момент когда транзистор VT2 закрыт и питание на светодиод идет через обмотку реле К1.

Потом этот резистор отпаиваем и измеряем его сопротивление, устанавливаем в схему постоянный резистор с таким же сопротивлением.

Еще один вариант — примерный расчет по формуле на основе закона Ома:

R_резистора = (U_питания — U_светодиода) / I_светодиода.

  • R — сопротивление, в Омах.
  • U — напряжение, в Вольтах,
  • I — ток, в Амперах.

Примем что питание схемы защиты у нас 22В, а рабочее напряжение светодиода — 2,5В с током 15мА:

R = (22В — 2,5В) / 0,015А = 1300 Ом.

Поскольку ток через светодиод в схеме будет протекать также через обмотку реле, то свечение будет менее ярким если бы вместо реле был просто проводник, но этого достаточно для индикации состояния. Важно чтобы ток через светодиод не превышал ток срабатывания/отпускания реле.

Печатные платы проектировал по старинке:

Рис. 2. Разводка печатной платы карандашом и расстановка компонентов.

В результате мною было изготовлено два экземпляра данного устройства (2+2 канала), вот что получилось:

Рис.3. Готовые устройства задержки включения и защиты акустических систем.

Приступить к наладке схемы нужно обязательно с подключенным усилителем низкой частоты (УНЧ) и акустическими системами (АС)!

Конденсатор С1 заряжается через общий провод, ток с которого идет через АС и УНЧ, а потом через резисторы R1 и R2.

Без АС и УНЧ схема не заработает так как должна работать. Если к схеме не подключить ни АС, ни усилитель мощности, то конденсатор С1 будет очень долго заряжаться через цепочку: R3 + переход Б-Э транзистора VT1.

Испытать схему можно и без АС и без усилителя НЧ. Делается это так:

  1. Вместо АС временно подключаем по резистору на 200-300 Ом (мощностью 2-5Вт)
  2. К контактам, что подключаются к усилителю, также ставим такие же резисторы на 200-300 Ом.
  3. Включаем схему, через несколько секунд должно щелкнуть реле (конденсатор С1 зарядился через резисторы которые мы подключили к входу вместо усилителя).
  4. Подавая положительные и отрицательные постоянные напряжения 10-20В с внешнего блока питания на резисторы что подключены вместо усилителя можно убедиться в работоспособности защиты от попадания постоянного напряжения на выходе усилителя, реле должно отключить резисторы, которые мы включили вместо АС.

Я разместил платки в корпусе усилителя как можно ближе к платам УМЗЧ и выходным клемам АС (на задней панели), это нужно чтобы максимально сократить длину соединительных проводников от УНЧ к защите и к клеммам для подключения АС.

Защита АС.

Теория и практика устройств защиты акустических систем.

Всем известно, что транзисторные усилители, конструктивно выполненные на дискретных элементах или же на микросхемах, включая гибридные интегральные схемы таят в себе опасность вывода из строя нагрузки, которой являются акустические системы. В случае пробоя транзисторов выходного каскада постоянное напряжение, имеющее величину, равную половине напряжения питания ( для схем, имеющих двуполярное питание) начинает поступать прямиком на динамик. Нескольких секунд достаточно, чтобы катушка динамической головки сгорела, обрекая незадачливого владельца на жизнь без акустики, а значит и без музыки. Следует также помнить, что если в документации на интегральную микросхему написано о наличии встроенной системы защиты акустики от  постоянного напряжения, это не означает , что все в порядке и можно успокаиваться. Интегральная микросхема с защитой не  менее успешно может спалить звуковые катушки динамиков в том случае, когда детали защиты и выходной каскад уже успешно сгорели. Типичным примером являются случаи отказов УНЧ на основе печально известных ИМС TDA7293 и TDA7294, когда после взрыва микросхемы торжественно сгорал динамик. Горячо любимой многими серии Overture от National semiconductors также нужна система защиты АС от постоянного напряжения, несмотря на ее наличие внутри микросхемы. Представители: LM1875, LM1876, LM1877, LM2876, LM3875, LM3876, LM3886, LM47xx. Транзисторы выходного каскада усилителя мощности могут сгореть в случае короткого замыкания в нагрузке, из-за перегрева ( тепловой пробой ) а также из-за превышения максимально допустимого значения напряжения питания усилителя. Иногда возможен выход из строя из-за пробоя статическим электричеством.

Практически все современные линейные усилители мощности звуковой частоты построены с использованием двухполярного источника питания и с непосредственной (без разделительного конденсатора) связью с нагрузкой. Такая структура усилителя при всех достоинствах имеет один весьма существенный недостаток — возможность появления на выходе усилителя в случае его неисправности постоянного напряжения и, следовательно, выхода из строя дорогостоящей высококачественной динамической головки. Это обстоятельство вызывает необходимость в использовании специальных защитных устройств, отключающих нагрузку при появлении на выходе усилителя постоянного напряжения. Неизбежная проблема, возникающая при создании таких узлов, состоит в определении времени их срабатывания. Позднее срабатывание чревато выходом из строя головки. Преждевременное срабатывание может отключить систему при прохождении через усилитель сигнала очень низкой частоты. Поэтому необходим некоторый компромисс при определении времени задержки срабатывания. Как показывает практика, достаточно 2 с, чтобы устройство защиты не срабатывало при любых нормальных звуковых сигналах, но при появлении неисправности отключала громкоговоритель без его теплового повреждения. По структуре типичная система защиты состоит из детектора постоянного напряжения и драйвера реле,  обычно на транзисторе, но бывают и случаи применения интегральных микросхем. Хорошая система защиты имеет на входе специальный фильтр низких частот.  Существуют также специализированные микросхемы, включающие в себя как защиту АС от постоянного напряжения на выходе усилителя с задержкой подключения, так и защищающие УМЗЧ от короткого замыкания и перегрузок при условии, что схема УМЗЧ имеет датчик тока или детектор перегрузки.  Представители: ИМС TA7317 производста TOSHIBA и ИМС mPC1237 производства HITACHI.

В каких случаях защита не нужна:

1. Усилитель ламповый.

2. Если усилитель имеет однополярное питание. В таких схемах на выходе усилителя между выходным каскадом и акустической системой устанавливается разделительный конденсатор, отсекающий постоянное напряжение на выходе, а оно там изначально есть по определению, что обуславливается особенностями схем УНЧ с однополярным источником питания. Примером таких схем служат интегральные микросхемы вроде TDA1552…1557, TA82xx, большинство ИМС серий LA, mPC, TEA, все, что используется в переносной аппаратуре и автомагнитолах а также некоторые гибридные интегральные схемы.

Последних не так много, поэтому перечислю их все:

Гибридные ИМС, имеющие однополярное питание и разделительный конденсатор на выходе:

Производства Sanyo semiconductors:

STK011, STK015, STK016, STK024, STK031, STK035, STK4017, STK4019, STK4021, STK 4023, STK4025, STK430, STK4311, STK433 и STK433-105, STK4332, STK435 и STK432-105, STK4352, STK436 и STK436-105, STK4362, STK437, STK4372, STK439, STK4392, STK441 и STK441-105, STK4412, STK443, STK4432.

Из достаточно старых, а поэтому и редких гибридных схем (возможно фирмы SHARP, но точных данных у меня нет, поэтому утверждать, что это стопроцентно SHARP, не буду) могу упомянуть HLX1402R, HLX1403R.

Аналогичные гибридные ИМС в свое время делала польская фирма UNITRA. Представители ИМС с однополярным питанием: GML005, GML006, GML007, GML008, GML024, GML026.

На что следует обратить особое внимание: Унитровская GML025 хотя и имеет однополярное питание, однако разделительный конденсатор на выходе отсутствует. Это на тот случай, если она каким-то чудом попала к вам в руки. STK4065 и STK4067 имеют однополярное питание, конденсатора на выходе нет, это мостовые автомобильные ( в основном) ИМС. Конечно можно этот самый конденсатор и установить, однако при использовании штатной схемы включения настоятельно рекомендую установить систему защиты АС от постоянного напряжения. Гибридные ИМС других производителей и серий не упоминаю, потому, что они все имеют двуполярное питание.

Существуют нестандартные схемы защиты АС от постоянного напряжения на выходе, например, установка неполярного электролитического конденсатора большой емкости ( от 1000мкФ и выше) между выходом усилителя и нагрузкой:

Однако не стоит удивляться, если качество звучания без конденсатора будет лучше, чем с ним. Не нужно так устанавливать обычный, полярный конденсатор в усилитель с двуполярным питанием по принципу «плюсом к усилителю, минусом к колонке», он спасет динамики только в случае появления положительного напряжения на выходе. В случае с отрицательным напряжением все пойдет на динамик и кроме сгорания динамика через некоторое время конденсатор вспучится или даже взорвется. Если уж нужно срочно пока обойтись конденсатором то имеет смысл установить его так, как показано на рисунке, составив из двух полярных один неполярный:

При этом учтите, что при таком включении получается неполярный конденсатор, однако на него нужно подавать поляризующее напряжение, что позволит работать ему правильно и исключит сильное ухудшение качества звучания:

В этом случае величина сопротивления R должна быть такой, чтобы на конденсаторе было напряжение, равное хотя бы 10 процентам от его рабочего напряжения.

Эти варианты, предназначенные для защиты акустики в случае с двуполярным питанием лишь на самый крайний случай, принимать его за  правило категорически НЕ СЛЕДУЕТ! На время проверки и настройки усилителя при отсутствии под рукой готовой исправной системы защиты сойдет. К тому же, от щелчка в момент включения и выключения усилителя конденсаторы не спасают как в случае однополярного, так и в случае двуполярного питания. Этот щелчок возникает в момент появления переходного процесса в момент зарядки емкостей фильтра источника питания. Если усилитель не оснащен системой полного приглушения звука в момент включения а также в случаях срабатывания различных встроенных систем защиты, при включении в динамике будет щелчок. Щелчок появляется как в момент включения так и выключения усилителя, за исключением усилителей с незаземленной средней точкой. Мощным динамикам с низкой чувствительностью он не страшен, однако в случае, когда АС имеют чувствительность выше 90  дБ этот щелчок весьма громкий и в ряде случаев может повредить динамик вплоть до механического повреждения диффузора. По этой причине хорошая система защиты должна при включении подключать АС с задержкой в несколько секунд а при выключении усилителя — мгновенно отключать.

Избежать щелчка можно также пойдя альтернативным путем, установив ручной включатель акустики путем установки мощного тумблера или кнопки:

Конденсаторы, установленные параллельно контактам помогают предотвратить возможное искрение контактов в случае, когда АС включают уже при играющем на большой мощности усилителю и тем самым продлить срок службы выключателя.

Качество контактов и чистота материала, из которого они изготовлены помогут свести к минимуму вохможное влияние на  звучание аппаратав целом. По этой же причине все соединения от выхода усилителя целесообразно выполнять пайкой, а не зажимать голый провод в  зажимы или колодки. Это чревато ухудшением контакта и окислением через определенный промежуток времени. Места пайки следует очистить от остатков флюса и  желательно покрыть лаком, что предохранит в будущем паяные соединения от окисления на воздухе и влияния эксплуатации в  условиях повышенной влажности. Если по ряду причин система защиты АС от появления постоянного напряжения на выходе усилителя не нужна ввиду вышеописанных случаев, а от щелчка избавиться нужно, но при этом религия не позволяет использовать кнопки и тумблеры, специально для фанатов применения реле везде, где только можно существует вот такой вариант:

Время задержки подключения определяется временем зарядки конденсатора С5 через резистор R7. Время задержки при желании можно изменять подбором резистора R7 или конденсатора С5.  Возможно применение импортных реле или отечественных реле с меньшим напряжением срабатывания — тогда сопротивление включенного последовательно с обмоткой реле резистора R6 следует увеличить.

Помимо указанного на схеме можно применить транзисторы типа КТ603 или КТ608.Из импортных подойдет, например, ВС546-ВС550. Вместо диода VD1 можно применить любой маломощный кремниевый диод отечественного или импортного производства, например КД522,1N4148,1N4001.

Несколько примеров реально работающих и проверенных в деле систем защиты АС с задержкой подключения.

Несколько схем простых устройств защиты АС, взятых на различных сайтах в качестве примера:

ВНИМАНИЕ! Схемы могут содержать неточности и предназначены для ознакомления. Возможные опечатки на совести авторов.

 Источник неизвестен.
 Взято с сайта Александра Котова: http://akotov.narod.ru
 Взято с сайта Константина Мусатова: http://musatoffcv.narod.ru
 Оригинал взят отсюда: http://lavr30.narod.ru/htmsch/sound/16/asprotect.htm
 Оригинал взят отсюда: http://samodel.boom.ru/different/guard1/guard1.htm
 Оригинал взят с сайта: http://valveaudio.tripod.com/
 Взято из книги Д. И. Атаев, В. А. Болотников «Практические схемы высококачественного звуковопроизведения»,
Изд-во «Радио и связь», 1986
 Взято из книги Д. И. Атаев, В. А. Болотников «Практические схемы высококачественного звуковопроизведения»,
Изд-во «Радио и связь», 1986

Список рекомендуемой литературы по теме:

1. А. А. Петров «Звуковая схемотехника для радиолюбителей» изд-во «Наука и техника», Санкт-Петербург, 2003.

2. Войшвилло  А. О способах включения нагрузки усилителей НЧ. — Радио, 1979, № 11, с.36,37.

3. Барабошкин  Д. Блок защиты усилителя мощности. — Радио, 1983, № 8, с. 62, 63.

4. Устройства защиты громкоговорителей. — Радио, 1986, № 10, с. 56-58.

5. Д. И. Атаев, В. А. Болотников «Практические схемы высококачественного звуковопроизведения», Изд-во «Радио и связь», 1986

6. Д. И. Атаев, В. А. Болотников «Функциональные узлы усилителей Hi-Fi», изд-во МЭИ, 1994

7. П. Шкритек «Справочное руководство по звуковой схемотехнике», изд-во «Мир», 1991

8. Ю. Залиский Устройство задержки включения и защиты громкоговорителей, Радио № 5 1998

9. Гумеля  Е. Качество и схемотехника УМЗЧ.- Радио, 1985, № 9, с. 31-35.

10. Гумеля  Е. Качество и схемотехника УМЗЧ.- Радио, 1986, № 5, с. 43-46.

11. Д. Андронников Устройство защиты АС и источник питания для Lynx 11, http://lynxaudio.narod.ru

 

 

Обсуждения, дополнения и справедливая конструктивная критика проходят у меня на  форуме

Написано 12.10.2005

Устройство для защиты акустических систем


ЗАЩИТА АС УМЗЧ

Изначально задумал использовать схему защиты от БРИГ, но затем читая отзывы о симисторной защите захотел попробовать ее. Блоки защиты были сделаны в самом конце, тогда было туго с финансами, а симисторы и прочие компоненты схемы у нас оказались довольно дороги, поэтому вернулся к релейной защите. Напоминаю, что все схемы находятся в первой части обзора.


В итоге были собраны три блока защиты, один из них для сабвуферного усилителя, а два остальных для каналов ОМ.


В сети можно найти большое количество схем блоков защиты, но эта схема перепробована мной неоднократно. При наличии постоянного напряжения на выходе (выше допустимого) защита мгновенно срабатывает спасая динамическую головку. После подачи питания реле замыкается, а при срабатывания схемы оно должно размыкаться. Защита включает головку с небольшой задержкой — это тоже в свою очередь, является дополнительной страховкой и щелчок после включения, почти не слышен.


Компоненты блока защиты могут отклоняться от указанного, Основной транзистор можно заменить на наш КТ815Г, использовал высоковольтные транзисторы MJE13003 — их у меня навалом, кроме того, они довольно мощные и не перегреваются в ходе работы, поэтому в теплоотводе не нуждаются. Маломощные транзисторы можно заменить на S9014, 9018, 9012, даже на КТ315, оптимальный вариант — 2N5551.


Реле на 7-10 Ампер, подобрать можно любое реле на 12 или 24 Вольта, в моем случае на 12 Вольт.


Блоки защиты для каналов ОМ установлены возле трансформатора второго инвертора, работает все это дело довольно четко, при максимальной громкости защита может сработать (ложно) крайне редко.

Защита УМ и АС

Защита УМ и АС

Внимание! Для исключения (минимизации) искажений, вносимых контактами реле защиты АС в звуковой тракт, нужно «горячий» контакт цепи обратной связи УМ присоединять между контактами реле и АС. Контакты реле шунтируют резистором, сопротивлением на порядок большим, чем резистор цепи ООС (у меня – 2 Мом). Это необходимо для сохранения ОС по постоянному току, когда разомкнуты контакты реле.

Реле для УМ с питанием +/- 50V и нагрузкой 4 Ом, можно взять, например, типа RT315- 16А на группу контактов на переменном токе. Так же подойдёт (проверяйте параметры): RX РЭН33, WJ108-1C5V-10A, омрон g2r-2, RT21LO24, Relpol RM-81P, RT G2R112DC и G2R124DC.

DC Protection / Time Delay for Loudspeaker

https://users. otenet. gr/~athsam/protection_1.htm

A exceptionally useful circuit for all the final amplifiers, but also in other applications that we needed some time delay and protection DC. The particular circuit combines enough operations, as: [ 1 ] Smooth departure of benefit of AC line of network, with delay 1sec, to the transformers of power supply of amplifier, via the RL1 and the resistance Rx. (see block diagram). [ 2 ] Delay of connection of expenses of final amplifiers, in headphone, in order that noises emanating from the charge — uncharged of capacitors of power supply, they do not pass in them. Simultaneously becomes control of exit of amplifiers for existence of continuous voltage [DC]. If all go well it connects, the amplifiers in loudspeaker. At the duration of operation of amplifiers, exists continuous control, for DC voltage in the exit of amplifiers, unplug him loudspeaker, if is presented problem ph. «opens» some transistor in the final stage and passes the voltage of supply to loudspeaker. [ 3 ] Clue of situation ERROR, optically with the LD3 (can is flash led) and soundly with buzzer (BZ). [ 4 ].

A other operation that exists and with difficulty will find in proportional circuits, is also the existence second relay (RL3), with parallel contacts in the main relay (RL2), connection the loudspeaker in the amplifiers, that it little closes afterwards the RL2. The idea I add one still relay, was supported in the problems that exist, after frequent use of RL2, his contacts are degraded by the electric arcs that are created when it opens and closes relay. Result is a spectrum of frequencies, because the high resistance that is developed in the contacts, the sound of be degraded. This problem is untied to a large extent, if are added, other contacts at the same time with first, that would close after them, remaining thus clean, one and are not created, on them, differences of potential, so that they are degraded. The circuit can work excellently also in actively loudspeaker one and the circuits of detection DC, afterwards the J2, can make so much all loudspeakers we have. In this case, they will need so much circuits of protection, that actively loudspeaker, we have. In the BLOCK diagram I give a flavour of typical connections, that can become, when the circuit use in stereo amplifier and his supply are taken from main power supply his.

How it works.

The supply of circuit becomes from a AC line in the J1. This voltage can be from a separate transformer 2X12V (the prices of materials that I give it is for 2X12V AC), from existing coil 12V in their M/T of power amplifier or if it cannot become somebody from the two, then from the coils of mainly supply final amplifier, adapting always the prices of resistances R1/2 and R3, proportionally the price of voltage that is supplied the amplifier, according to the law of Ohm and the fall of voltage that we want to achieve (R=V/i). The voltage that it should we have in point A, before the IC2, should is bigger than + 15V 200mA, the IC2 supplies all the relay and led. The remainder circuit is supplied by the R3/D9. When we supply the amplifier with voltage of network (220V AC), charge the C6 via the R4, the price in the entry of IC1a is (H) exit (L) Q1- RL1, is in cutting off. In line with being first the M/T of power supply, intervenes the RX, which ensures smooth connection the M/T in the network, avoiding the burn of fuses, specifically if the force power supply, is big. After 1sec after charge the C6, his negative pole goes to 0V, the entry of IC1A becomes 0V (L), conduct Q1 closes the RL1, short the resistance RX and all the voltage of network is applied in the M/T. Simultaneously turns on LD 1. Via the R5 charge slow the C7 (~5sec), when charge the situation in the pin5 of IC1b become (H), (the other are already (H) from the R23), exit is (L) and the exit of IC1C (H), the Q2 drive the RL2, giving the output of amplifiers in loudspeaker. Simultaneously via the R13 charge the C8 (~2 sec). Hardly charge the C8, conduct the Q3 and close the contacts of RL3, at the same time with those of RL2. The circuit is in complete operation. If we interrupt the line of network all the supply’s fall very fast, with result all relay is cut off, very rapidly cut off, him loudspeakers. If are presented some continuous voltage in entries J2/1 and J2/4, the two circuits of detection DC, then the Q5 or Q6 conduct and lead the entry of IC1b to pin 5 to 0V (L), with result the exit is become (H), the exit of IC1c to be become (L), transistors Q2-3 are cut off and away also the RL2-3 to open, disconnect, him loudspeakers, from the output of amplifiers, until is raised the cause of presence DC.. The same time the exit of IC1D, becomes (H), Q4 conduct, the buzzer [BZ] sounds and turns on the LD3, signaling error. The intensity of sound of BZ, can be regulated from the TR1, but it can it is suppressed if we do not want sound clue of error. The prices of times can change, if are changed capacitors C7-8, with different capacity. Resistances R1-2 if use finally, R3 and RЧ, should be in some distance from pcb, one and likely hot. The IC2 should enter on heatsink, specifically if the voltage of entry exceeds the +15V. Big attention it should we give in the circuit round resistance RX/CX and the contacts of RL1, because the voltage of network is dangerous (DANGER of ELECTROCUTION). For this reason good it is insulation. What it should we are careful is the quality of all relay, is very good and from known constructor.

R1-2=See text* D1-4= 1N4007
R3=470R 1W*see text D5-8= 1N4148
R4-5= 1M D9=12V 1.2W Zener
R6-7= 1K D10-22= 1N4148
R8-14= 15K LD1-2= LED
R9-15= 56K LD3=Flash Led [RED]
R10-16= 56K BZ= BUZZER 12V
R11-17= 10K J1-4= Connectors
R12-13= 39K TR1= 10K Trimmer
R18= 39K RL1-3= 12V 2X2(10A)RELAY
R19= 1K2
R20= 1K
R21-22= 3K9
R23= 22K
R24= 39K
RX= 47R 10W
C1= 220uF 63V
C2-5= 47uF 63V
C3-4=100nF
C6= 1uF 25V
C7= 4.7uF 25V
C8= 470uF 16V
C9-14= 22uF 16V
C10-13= 33uF 63V
CX= 33nF 630V
IC1= 4093 cmos
IC2= 7812T
Q1-4= BD679
Q5-6= BC550C

Блок защиты АС. https://www. *****/forum/showthread. php/4226-Защита…/page52

В аварийных ситуациях, при протекании постоянного тока через динамик, его катушка сгорает, поэтому обязательным условием для мощных усилителей является применение защиты АС. Блок защиты (рис. 10) работает следующим образом.

Диапазон питающих напряжений: …………………………….. +/-20…+/-60V Время срабатывания: от постоянного напряжения +/- 1V …………………….. не более 0,5 сек. от постоянного напряжения +/- 30V ………………….. не более 0,1 сек.

При включении питания начинает заряжаться конденсатор С3 (от источника питания через R7- R8). Через 1 сек. напряжение на нём достигнет величины, достаточной для открывания VT3, затем открывается VT4, и реле своими контактами подключает АС к усилителю. При нормальной работе УМ переменное напряжение с его выхода не успевает зарядить С1-С2, а при аварийной ситуации постоянное напряжение с выхода усилителя откроет VT1 или VT2 (в зависимости от полярности), напряжение на С3 уменьшится и реле отключит АС. При ложных срабатываниях защиты на большой громкости следует увеличить ёмкость С1-C2. Чертёж печатной платы блока защиты АС приведён на рис.11 и 12. Желательно использовать для каждого канала отдельный блок защиты АС. Питание реле (U P1) нужно осуществлять от источника, имеющего меньшую ёмкость фильтра питания, чем у самого усилителя, для того, чтобы при выключении питания реле Р1 отключалось первым. Реле следует применять с как можно большей площадью контактов и усилием пружин, т. к. у миниатюрных реле (особенно у герконовых) бывают случаи пригорания контактов и невозможность отключения в аварийной ситуации.

Рис.11. Плата блока защиты АС. Вариант 2. Вид со стороны деталей. Размер 60х30мм. Шаг сетки 2,5мм.

Рис.12. Плата блока защиты АС. Вариант 2. Вид со стороны пайки. Размер 60х30мм. Шаг сетки 2,5мм.

Защита акустических систем

Универсальная защита акустических систем от постоянного напряжения, щелчков и выбросов при включении и отключении питания, инфранизких частот. Применена во всех моих усилителях с незначительными вариациями схемы. Отличается от других конструкций аналогичного назначения независимостью каналов, надежностью, простотой настройки порога срабатывания и времени задержки. Светодиод в цепи питания индицирует подключение акустических систем и выведен на лицевую панель в качестве индикации включения усилителя. Максимально допустимое напряжение питания защиты — 36 вольт, при превышении этого значения выйдет из строя ИМС TL431. Конденсаторы С1 и С2 — неполярные электролитические. Транзисторы — любые кремниевые маломощные. Диодный мост VD1 должен иметь допустимое обратное напряжение не менее значения напряжения питания усилителя, выпрямленный ток мостика не важен. Диоды VD2, VD3 — любые маломощные, VD4 — с малым временем восстановления и обратным напряжением не менее 100 вольт.

А я несколько модифицировал защиту Александра Котова. Убрал тл431, завел выход на ресет д триггера (к-й устанавливается при включении), вобщем теперь триггерная защита, если сработает, то надо выключить и снова включить аппарат. Ну и защита у меня не разрывает провод к динамикам, а рвет питание на основной трансформатор УМ. Имхо так правильней, если уж постоянка на выходе появилась, то что-то не в порядке и надо питание снимать. Еще плюсы колонки напрямую к УМ подключены, а не через контакты реле. Минус нужен еще один трансформатор, маленький дежурный на 12-18В.

НО! При пробое оконечника банки будут разряжаться в динамик. Ему может стать плохо…

А правильней было бы сделать автоматический возврат в рабочее состояние с устранением признаков неисправности. Или, если так уж важно, сбрасывать чисто триггер СЕТом, не насилуя силовые части.

Вот здесь: https://akotov. *****/2.html я запитал наоборот защиту от реле софт-старта. Печатки нет — каждый раз по месту рисовал. Насчет проще не бывает — похоже, что бывает Сейчас нарисовал следующую схему для автомобильного УМЗЧ с преобразователем напряжения на ИМС SG3525. В случае поступления одинакового по величине, но противоположного по знаку напряжения на входы защиты она сработает, так как у нее различный порог срабатывания по положительному и отрицательному напряжению. Впрочем, случай выхода из строя 2-х каналов, да еще разных плеч — редкий. Полевик — на любой старой старой материнке имеется, там же и конденсатор входного фильтра — таких много напаяно под процессором. Диода параллельно обмотке реле нет, так как в полевике есть диод между стоком и истоком. Задержку обеспечивает цепь софт-старта в ИМС SG3525, по окончанию задержки на выводе 8 около 5 вольт. При сработке защиты преобразователя реле так же выключится, так как напряжение на выводе 8 пропадёт.

Варианты.

https://www. *****/forum/showthread. php/4226-Защита…/page10

Уверенно срабатывает защита от постоянки от +/-2 до +/-45 вольт. См. Схему выше.

Можно ли сделать быстрое отключение реле защиты без использования традиционных для этого способов: запитки защиты от отдельного источника с малыми емкостями, отдельного выпрямителя или замыканием с помощью сетевого выключателя базы ключевого транзистора на землю? Например, так: полевик irf540 используется в качестве своеобразного порогового элемента, порог включения и соответственно выключения определяется соотношением делителя в цепи затвора. Допустим, при выключении питания усилисекунды еще работает от конденсаторов источника питания, величина напряжения падает до порога при котором полевик закрывается и обесточивает реле раньше чем усилитель начинает выходить из рабочего режима, сопровождающимся хрипом и хлопком в колонках. Допустим, напряжение питания 20В, откинем 3-5 вольт на просадку напряжения и снижение сетевого, чтобы реле не отключалось во время громкого прослушивания музыки, порог закрывания полевика с помощью делителя установим на 15В, при таком напряжении усилитель еще будет работать без существенных искажений но реле защиты уже отключит нагрузку и по идее это не должно сопровождаться заметными звуковыми эффектами? https://www. *****/forum/showthread. php/4226-Защита…?p=1323304&viewfull=1#post1323304

Получить полный текст


Уровень сработки зависит только от R3,R4,R5 — и больше ни от чего!!! https://www. *****/forum/showthread. php/4226-Защита…/page30

Ещё вариант от польского специалиста https://www. *****/forum/showthread. php/4226-Защита…/page36 :

Решение от WASO:

стариковская защита под кодовым названием «Бриг» не лишена недостатков, но работает железно и несносимо уже у нескольких поколений любителей. Комплектуху, стестно, сменить на буржуйскую, последние два транзистора перед реле на дарлингтон, я ставлю ВС618.

https://www. *****/forum/showthread. php/4226-Защита…/page18 защита Сакевича с добавленной цепью (КТ3107) быстрого отключения акустики при выключении уся(обесточивании обмоток трансформатора)

Предлагаемое устройство может быть использовано как для настоящего проекта, так и для самостоятельного конструирования усилителей звуковых частот.

Достоинства:

• простота и надежность; • практически полное отсутствие ложных срабатываний; • универсальность применения.

Недостатки:

• Отсутствует схема отключения акустических систем при пропадании питания. Этот недостаток был принесен в угоду простоте и надежности устройства.

В схеме защиты установлены пассивные инфразвуковые фильтры нижних частот второго порядка (соответственно C3, C5, R10, R12 и C4, C6, R11, R13) и сенсоры аварийного постоянного напряжения на выходе усилителя (VT2, VT4, VT6 и VT3, VT5, VT7). При напряжении любой полярности более 1,5 В открывается соответствующий ключ (VT2 или VT3 для положительной полярности постоянного напряжения и VT4, VT6 или VT5, VT7 – отрицательной). При аварии база составного транзистора VT8, управляющего последовательно включенными электромагнитным реле К1 и К2, через низкоомный антизвоновый резистор R5 надежно соединяется с общим проводом, размыкая соединение выходов акустических систем через контакты реле.

Интегрирующая цепь R1, C2 в базовой цепи транзистора VT1 обеспечивает задержку подключения акустических систем при включении питания (на время 1,8 с), тем самым предотвращается проникновение в акустическую систему помех, вызванных переходными процессами в усилителе. Схема защиты универсальна и может использоваться с другими УМЗЧ. В таблице, размещенной в правом верхнем углу схемы рис. 5 указаны номиналы R6, R7, которые необходимо изменить в соответствии с напряжением питания Uп усилителя.

Технические характеристики:

Напряжение питания, В=
+25…45
Время задержки включения, с=
1,8
Порог срабатывания защиты, В=
более ±1,5
Выходной ток для питания реле, мА=
до 100
Детали схемы:

VT1…VT3, VT6, VT7 – Транзистор BC546B (ТО-92) – 5 шт., VT4, VT5 – Транзистор BC556B – 2 шт., VT8 – Транзистор КТ972А – 1 шт., VD1 — Стабилитрон КС212Ж (BZX55C12, 12V/0,5W, корпус DO-35) – 1 шт., VD2 — Диод 1N4004 – 1 шт., K1, К2 — Реле электромеханическое (1C, 12VDC, 30mA, 400R) BS-115C-12A-12VDC – 2 шт., R1 — Рез.-0,25-220 кОм (красный, красный, желтый, золотистый) – 1 шт., R2 — Рез.-0,25-1 м (коричневый, черный, зеленый, золотистый) – 1 шт., R3, R4 — Рез.-0,25-11 кОм (коричневый, коричневый, оранжевый, золотистый) – 2 шт., R5 — Рез.-0,25-10 Ом (коричневый, черный, черный, золотистый) – 1 шт., R6 — Рез.-0,25-2,2 кОм (красный, красный, красный, золотистый) – 1 шт., R7 – Перемычка, R8…R11 — Рез.-0,25-22 кОм (красный, красный, оранжевый, золотистый) – 4 шт., R12, R13 — Рез.-1-22 кОм (красный, красный, оранжевый, золотистый) – 2 шт., C1, C2 — Конд.47/25V 0511 +105 °С – 2 шт., C3 – C6 — Конд.47/50V 1021 NPL (47/25V 1012 NPL) – 4 шт., Клеммник 2к шаг 5мм на плату TB-01A – 5 шт.


Оптронная система защиты громкоговорителей индивидуальная для каждого канала. Схему выложил, она из «Радио» (
Транзисторы VT1 и VT2 должны быть с Ку не меньше 200, а VT3 и VT4 — не менее 300. Время задержки регулировать лучше емкостью С2. Работает как часы
надежно срабатывает от 1 В постоянки
.
). https://www. *****/forum/showthread. php/20941-Двухблочный-УМЗЧ/page8

Схема от Корвета-(004, кажись)

Подбором R6 добиваемся симметричности положительного и отрицательного напряжений срабатывания, подстраивая под имеющееся напряжение питания. https://www. *****/forum/showthread. php/4226-Защита…/page25

Всё просто, запитывать её нужно от БП имеющего после диодного моста очень мелкий электролит, порядка 5…30 мкФ, тогда при пропадании питания релюха сразу будет обесточиваться.

Следующая защита разработана для мостового УМЗЧ. На рисунке один из входов заземлён.

https://www. *****/forum/showthread. php/4226-Защита…/page37

желательно только добавить диод (любой маломощный) катодом на +12в, анодом на базу VT1, это обеспечит быстрый разряд конденсатора задержки при выключении усилителя. И ещё вместо сборки из двух транзисторов удобнее использовать микросхему tl431. Ну и может быть оптронами напрямую коротить кондёр 220мкф не стоит, могут обидеться, я бы добавил резистор ом 100 для ограничения тока разряда, хотя и чуть медленнее будет защита срабатывать.

Существует вероятность выхода из строя VT2, так как не контролируется ток базы. Почему бы не объединить коллекторы V1, VT2?

Ток эмиттера VT1 зависит от температуры, изготовителя и партии, по этому может оказаться слишком большим, даже возможно, что сгорит именно VT1.

Точно так же, когда меня достал этот разброс бетты от температуры и экземляров транзисторов, я поставил TL431. (А. Котов)

____________________________________________________________________

Рисунок выше, это широко известная «Защита Котова».

Токовая защита

Приобрести товар возможно на сайте www. conrad. ***** и www. *****
Best. N 535346 Биметаллический термовыключатель
Для непосредственного монтажа в трансформаторы, моторы и др. Подключение с помощью 6,3мм флэш-штекера. Допустимое напряжение/ток: 250В~/6А. Температура размыкания (±5°С) 145°С. Температура замыкания 105°С.

https:///sound/amps/amp162.php

Защита АС на микросхеме uPC1237 (СА1237HA)

Статья не является руководством по сборке устройства, а лишь поясняет некоторые возможности и принципы работы микросхемы описанные в даташите. Отличная идея — защита управляемая микросхемой по типу «все в одном». Тут и mute, термозащита, защита от постоянного напряжения на выходе, задержка включения и прикольная фишка в виде отключения выхода при выключении усилителя тумблером 220VAC (on/off), т. е. усилитель не будет играть от конденсаторов БП, а сразу выключится. Ну не рай ли это? Нашел в этой микре только один минус, хотя маловероятный: если у нас на выходе левого, например, будет +30В, а на выходе правого -30В постоянки, то результирующее напряжение получится 0 и защита не сработает и АС успешно погорит, правда такое маловероятно. Но это не недостаток конкретно этой микросхемы, а любой защиты с резистивным суммированием напряжения на входе. Теперь к микросхеме uPC1237 (СА1237HA). Хотя микросхема универсальна и работоспособна в пределах +25…60В для ее работы на определенном Uпит, необходимо пересчитать некоторые номиналы. Начнем по порядку (обозначения по схеме выложенной мной ниже).R6. Рассчитывается исходя из формулы R6=Uac/1.5 (результат получаем в кОм’ах). Uac — напряжение (действующее, переменное) на вторичной обмотке трансформатора. Откуда я взял эту формулу? В даташите приведены графики зависимости R от U, как видно зависимость между ними линейная и произведя простейшие математические расчеты, вывел, что коэффициент зависимости между ними равен 1,5. Полученный после расчетов результат округляем в меньшую (!!) сторону до ближайшего существующего номинала. Постоянка на 4-ой ноге должна быть не более 10В (при расчете по моей формуле это условие соблюдается).

R4. Считаем по формуле R4=Uvcc/3 (результат в кОм). Uvcc – напряжение, которое мы подаем на схему (на моей схеме +45В). Номиналы вышеизложенных резисторов можно выбирать из таблицы, приведенной в даташите.

R5. Считаем исходя из параметров реле и напряжения питания. R5=Uvcc-Ur/Ir. Ur — номинальное напряжение реле, Ir — номинальный ток реле. Этот резистор рассеивает неслабую мощь и считается она по формуле P=Uvcc-Ur*Ir, плюс не помешает запас, умножаем результат на и округляем в большую (!!) сторону, приводя к ближайшему номиналу мощности (0.25, 0.5, 1, 2 Вт и т. д.)

.Реле. Реле можно ставить любое (только сдвоенное) — хоть на 12В, хоть на 24В (достаточно только пересчитать R5). Можно два реле (не сдвоенных) на 12В последовательно (лучше всего так и сделать). Ток коммутации реле не менее 10А при 220VAC. Номинальный ток катушки реле не более 60 мА (лучше меньше). Схема ниже. Схема ниже работоспособна. Все номиналы рассчитаны на +45В и на реле 24В 40мА.

Tr1. Что отдельный трансформатор? Нееет… Все гораздо проще! Это не отдельный транс, а отдельная обмотка на уже имеющемся трансе или на худой конец та же обмотка, от которой питается усилитель (если их две, то одна из обмоток, любая). Напряжение на ней (действующее, переменное) должно быть в пределах 5…65В, лучше брать поменьше, чтобы резистору R6 жилось легче. Эта вся возня с обмотками и дает нам следующий эффект: «отключения выхода при выключении тумблера 220VAC (on/off), т. е. усилитель не будет играть от конденсаторов БП, а сразу выключится.» Если не хотите такого эффекта, то организуйте резистивный делитель и обеспечьте 4-ю ногу постоянкой в 4…8В.

Примечание. При напряжении питания 48…50В можно отказаться от резистора R5 поставив две реле на 24В с последовательным включением катушек.

Потенциал у этой микросхемы огромный. Можно еще клип-детектор на оптопаре добавить, он же будет детектором перегрузки и добавить термозащиту и будет защита всем защитам + простота такого решения и мизер деталей.

Небольшой FAQ

Как организовать на этой микросхеме термозащиту? Принцип работы ее такой: когда напруга на 1-ой ноге менее 3.5В — защита выкл, когда напряжение более 3.5В — защита отключает выход. Откуда взять эти 3.5В? Необходимо собрать схему по контролю за температурой, которая бы при превышении определенного порога температуры подавала бы на 1-ую ногу микросхемы 3.5В. Схему организовать не сложно.

Как рассчитывать R1,R2 под мощность усилителя? Судя по даташиту от мощности не зависит, т. е. 56К вне зависимости от мощности усилителя.

После срабатывания защиты она не возвращается в рабочий режим, что делать? Она вернется, но через время. За время задержки отвечает С2. Если хочешь, чтобы защита сразу выключалась после пропадания постоянки, то 3-ий вывод закороти на землю

.Как организовать режим mute? Если на 7-ом выводе менее 3.5В — режим mute активен

.

Даташит uPC1237

Стельмах Илья

(Ms. *****@***com)

МАЛОМОЩНЫЕ УСИЛИТЕЛИ


Долго решал какой усилитель использовать для маломощных акустических систем. Как дешевый вариант вначале решил использовать микросхемы TDA2030, потом подумал, что 18-ти ватт на канал маловато и перешел к TDA2050 — умощненный аналог на 32 ватта. Затем сравнив звучание основных вариантов выбор впал на любимую микросхему — LM1875, 24 ватта и качество звучания на 2-3 порядка лучше, чем у первых двух микросхем.

Долго копался в сети, но печатную плату под свои нужды так и не нашел. Сидя за компом несколько часов была создана своя версия для пятиканальноо усилителя на микросхемах LM1875, плата получилась довольно компактной, на плате также предусмотрен блок выпрямителей и фильтров. Этот блок был полностью собран за 2 часа — все компоненты к тому времени имелись в наличии.

Большинство современных усилителей мощности звуковой частоты (УМЗЧ) построены без разделительных конденсаторов на выходе. При неисправности усилителя появление постоянного напряжения на выходе УМЗЧ может привести к повреждению дорогостоящих динамиков акустической системы. Для их защиты от постоянного напряжения любой полярности предлагаю несложное устройство.

В качестве прототипа взята схема устройства защиты усилителя «405» ф.»Guad», но приняты меры по пре-дотвращению самопроизвольного открывания симистора при высокой скорости нарастания выходного на-пряжения, которая бывает в современных УМЗЧ. Дополнительно введена световая индикация перегорания предохранителя на мигающем светодиоде при срабатывании защиты. При появлении на выходе УМЗЧ постоянного напряжения любой полярности более 3…4 В, резко возрастает напряжение на выводах конденсаторов С2, СЗ. Ток, протекающий через резистор R4, один из диодов VD5, VD6 и один из транзисторов VT1, VT2, открывает симистор VS1. Открытый симистор шунтирует выход УМЗЧ до момента перегорания предохранителя FU1. При его перегорании начинает мигать светодиод HL1. Элементы С1, L1 предназначены для предотвращения несанкционированного открывания симистора из-за помех.

Предохранитель выбирается исходя из максимальной выходной мощности усилителя и сопротивления акустической системы. В устройстве можно использовать резисторы типов С1-4, С2-23, МЛТ и другие соответствующей мощности. Конденсатор С1 — керамический, типов К10-7, К10-17, КМ-5. Оксидные конденсаторы С2, СЗ — типа К50-16, К50-35. Оба эти конденсатора можно заменить одним неполярным, при этом диоды VD7, VD8 из схемы исключаются. Диоды КД521А можно заменить на КД102 (А, Б), КД103 (А, Б), КД518А, 1N4148. Светодиод HL1 может быть как мигающим, так и постоянного свечения, например, АЛ307, КИПД35, КИПД40.

Транзистор VT1 можно заменить на КТ503Е, КТ602, КТ683, MPSA-43, 2N5550. VT2 заменяется КТ502Е или любым p-n-р транзистором из серий КТ6116, КТ668, 2SA709, 2SA910, MPSA-93. В качестве симистора VS1 подойдет КУ208 с индексами Г, Д или ТС112-10, ТС112-16 и другие на рабочее напряжение не менее 100 В. Дроссель L1 наматывается проводом ПЭВ-2 00,68 мм — 75 витков на каркасе из плотной бумаги с внешним диаметром 10 мм. Для проверки собранного узла плавкий предохранитель временно заменяется пампой накаливания на напряжение 6…12 В и ток 0,16…1 А. Узел подключается к выходу лабораторного блока питания с регули-руемым выходным напряжением 2…10 В. Плавно увеличивая выходное напряжение, по моменту зажигания лампы определяется порог срабатывания защиты. Если он будет не более 4 В, то узел пригоден для совместного использования с автомобильными УМЗЧ. При указанной на схеме емкости конденсаторов С2, СЗ, задержка срабатывания защиты составит около 1с. При необходимости время задержки можно уменьшить до 0,2…0,5 с, взяв эти конденсаторы меньшей емкости. Конструктивно этот блок может быть размещен как внутри УМЗЧ, так и в АС. В случае установки узла внутри акустической системы, если в АС есть наполнитель из горючего материала, например, вата, он не должен соприкасаться с деталями узла защиты. Для многоканального усилителя собирается соответствующее число блоков.

Литература Д.Атаев, В.Болотников. Функциональ-ные узлы усилителей высококачественного звуковоспроизведения. — Радио и связь, 1989, С.111.

ВИДЕО УСИЛИТЕЛЯ

Качество звучания этих микросхем на очень высоком уровне, в конце концов разряд Hi-Fi, отдаваемая мощность приличная — 24 ватта синуса, но в моем случае мощность повышена путем повышения питающего напряжения до 24-х вольт, в таком случае можно получить порядка 30 ватт выходной мощности. На основной плате усилителя у меня было предусмотрено место для 4-х канального усилителя на TDA2030, но чем-то оно мне не понравилось…


Плата для LM крепится на основную плату УНЧ через стойки в виде трубок и болтов. Питание для этого блока берется со второго инвертора, предусмотрена отдельная обмотка. Выпрямитель и фильтрующие конденсаторы расположены непосредственно на плате усилителя. В качестве выпрямительных диодов уже традиционные КД213А.
Дросселей для сглаживания ВЧ помех не использовал, да и нет нужды их применять, поскольку даже в довольно брендовых автомобильных усилителях их часто не ставят. В качестве теплоотвода использовал набор дюралюминиевых болванок 200х40х10 мм.


На плату также укреплен кулер, который одновременно отводит теплый воздух с этого блока и отдувает теплоотводы инверторов. С электроникой аудиокомплекса полностью разобрались — переходим к механике и слесарным работам… С уважением —
АКА КАСЬЯН.
Форум по созданию универсального домашнего аудиокомплекса

Обсудить статью ДОМАШНИЙ УСИЛИТЕЛЬ — УНЧ И БЛОК ЗАЩИТЫ

Защита акустических систем

Блок защиты акустических систем — основная часть любого профессионального усилителя мощности низкой частоты. В последнее время часто наблюдаю, что даже самые современные автомобильные и бытовые усилители лишены блока защиты, а ведь правильная защита всегда сохранит акустику при неполадках УНЧ.

Данный блок зашиты построен всего на трех транзисторах, пожалуй, это самая простая конструкция из тех, что известны мне. Этот блок может работать с любым усилителем мощности. Ограничительный резистор (по питанию) подбирается с мощностью 0,5-1ватт, его номинал подбирают исходя от напряжения питания УНЧ. Схема защиты акустических систем содержит дешевые компоненты, которые можно снять со старой аппаратуры.

Блок защиты АС.lay

Транзисторы могут быть заменены на другие. КТ817 можно заменить транзистором КТ815 и другим аналогичным средней мощности. Остальные два транзистора можно заменить транзисторами КТ315, КТ3102, С9018 и другими. Реле на 220 вольт ( в моем случае), подобрать с током 10-20 Ампер (в зависимости от мощности усилителя низкой частоты.

Принцип работы

Работает блок очень просто. Всем нам отлично знакомо, что на выходе хорошего усилителя сигнал синусоидальный. Выход усилителя мощности подключают к входу блок защиты. Когда подается питание на блок, реле замыкается, включая головку. Реле нужно подобрать исходя от мощности усилителя. В моем случае реле было снято из старого стабилизатора сетевого напряжения.

При подаче питания на блок защиты, реле замыкается с некоторой задержкой, обеспечивая плавное включение головки. Когда уровень постоянного напряжения выше номинально допустимого, то реле размыкается, этим отключая динамическую головку. Постоянное напряжение за несколько секунд может спалить катушку головки, оно может возникать, когда усилитель не исправен. Простой пример возникновения постоянки на выходе — неисправность выходного каскада, когда транзисторы вышли из строя, и переход не закрывается. В таких случаях постоянное напряжение погубит драгоценную головку. Защита предназначена для отключения головки в таких ситуациях.

Интересно: Светодиодный светильник своими руками

Головка будет отключена, пока есть высокий уровень постоянки на выходе усилителя. Как только уровень постоянного напряжения понижается, защита снова включит головку. Защита может сработать, если усилитель работает неправильно или неверно настроен, она включается только в то время, когда наблюдается «вражеский постоянный».

Зачем нужна защита в усилителе?

Все мы слышали, что в усилителях часто стоит модуль защиты, он усложняет схемотехнику, причем порой основательно вмешиваясь аж двумя, а то и тремя транзисторами в тракт усилиения полезного сигнала, т.е. музыки. Причем чем бюджетнее усиитель тем активнее туда данное вмешательство происходит. И зачем же это нужно? Давайте разбираться!

Изначально известно, что защита в усилителях срабатывает в четырех случаях:

1. Короткое замыкание на выходе УНЧ,

2. Сила тока превывшающая установленный порог на выходе УНЧ(или его потреблении — данный вариант на системах подороже),

3. Постоянное напряжение на выходе УНЧ,

4. Постоянное напряжение на входе УНЧ.

Первый пункт-то и натолкнул меня на размышения по данной теме, а часто ли у меня дома замыкает выход в усилителе? И как вообще такое может быть? Ответ на данный момент один — ни разу не было! Но чисто теоретически такое случиться может: робот пылесос например вирус словит и кабель засосет так что из колонки вырвет а потом на свой корпус намотает пока концы не замкнет; или вариант ребенок изучающий все и вся посредством канцелярской скрепки, что-нить гениальное сообразит…

Но тут меня дернула мысль в стиле «злостный маркетолог» — ну и что будет? Правильно! Ему ведь выгодно!!! Пользователь понесет аппарат или в фирменный ремонт, или за новым пойдет. Так и зачем же тогда защита от этой ситуации? Можно конечно предоположить, что производитель автомобилей например Форд придет к Сони и скажет «ребят при сгорании ваших усилков люди покупают ваши усилки снова а денег на новый авто у них от этого меньше, а так как я у вас один из самых крупных клиентов то давайте-ка вы туда защиту вставите а то я к Филипсу уйду». Но если даже такое предположить, то все равно не стыкуется, в дорогом ламповом Хай Энде защиты нет, а в бюджетном сегменте она самая навороченная. А ведь в этом сегменте аудитория в первую очередь покупает машину а уже потом об усилителе думает. Что-то не сходится. И тут я вдруг подумал, что есть страны где юридическая машина настолько сурова, что владелец бюджетного усилителя в случае если тот загорится даже адвоката искать не будет — они ему сами телефон оборвут с готовностью работать за проценты от суммы «выигрыша». И тут ведь получается, что чем бюджетнее усилитель тем сильнее его владелец может быть заинтересован в недосмотре за ребенком или с робота-пылесоса на какой сайт с бесплатными приложениями про боулинг зайти…

Вот и получается, что производитель работая заодно и на те рынки делает технику с повышенной защитой от такого инцидента.

Но хорошо. С первым пунктом разобрались. А что с остальными?

С постоянным напряжением на входе пожалуй отнесем к инцидентам первого пункта. С одной поправкой если на усилитель что-то случайно пролить, то внутри него может произойти замыкание которой приведет к похожей ситуации. Но тут вроде как явно не гарантийный случай будет. У производителя на тех рынках тоже юристы с экспетрами имеются.

Третий случай как мы знаем из некоторых статей на данном сайте, написанных солидным авторами, физически невозможен. На выходных каскадах усилителей всегда есть некоторое напряжение и оно отсекается выходным конденсатором а то и трансформатором. Но пролить кофе на усилитель все таки можно. Но это опять не гарантийный случай.

А что же у нас со вторым пунктом? Он-то тут самый интересный и он-то и призван обеспечить максимум безопасности. Дело в том, что людям помимо простого прслушивавния музыки иногда еще хочется включить погромче, позвать гостей, и пойти на улицу баркюшничиать. При этом аппарат оказывается в не зоны визуального конроля, а ароматический контроль так вообще временно отключен. Так еще и гости с хозяевами слегка на веселе, и если даже и увидят что усилитель помимо все прочего показывает синее плямя, то в панике могут запросто забыть его из розетки выдернуть прежде чем начать его поливать подручными средствами для розжига костров и каминов или еще чем хорошо проводящим электричество от внутренностей УНЧ к ногам окружающих. И тут уже как с подушками безопасности. Принудительная защита в т.ч. и виновника инцидента.

Но почему такое шоу может случится оттого, что владелец решил включить музыку погромче? Дело в том, что в этот момент начнут нагреваться катушки на динамиках в колонках. А когда они как следует нагреются они начнут неспеша перегреваться. Неспешный перегрев плох тем, что он приводит не резкому сгоранию проводника как в лампочке, а к плавному его нагреву до температуры ниже сгорания провода но выше чем выдерживает его изоляция. Было бы наоборот так и проблемы бы никакой не было. Но вот в этом режиме сопротивление катушки может может резко понизиться, что приведет к тому, что через усилитель потечет повышенный ток, он начнет искажать сигнал(чего разуместя никто на веселе не заметит) и активно греться, причем активнее чем это способна выдержать плата на которой он собран. А она кстати сделана из спресованной ткани и некоторой специальной смолы. Само название ТЕКСТОЛИТ содержит в себе текстильный корень. И вот когда плата загорается. Вот тогда-то все и начинается. И чтобы именно вероятность этого шоу понизить ставится защита. При этом становится очевидным, что аудиофильский сетап в этом режиме никто гонять не будет. Владелец который может его себе его позволить заодно прикупит для барбекюшных дел что-нить бюджетное, чтобы не жалко было на всю громкость навалить.

Вот и получается что а аудиофильских решениях защиты нет потому, что:

1. Никто не гоняет их на пределе громкости, мощности и терморежима,

2. Она портит звук,

3. Разумный компромисс гласит что без нее лучше звук, а риски изначально минимальны.

В бюджетных же решениях все с точностю до наоборот: звук не так принципиален, да и подпортить чуток «маректолог право имеет», а вот риски устроить пожар за который потом платить страховой по недвижимости, в странах с суровой юридической системой, которая по совместительству тот же самый банк, что и кредиты населению выдает, который как и Форд давить на Сони ресурсы сбыта имеет…

Вывод.

Защита в усилителе нужна в первую очередь не для того, чтобы спасти колонки от поломки внутри усилителя, а для того, чтобы прослушивание музыки на повышенной громкости не привело к поломкам последствием которых будет возгорание усилителя. Но т.к. возгарания все таки случаются, то правильнее говорить вместо «не привело», миинимизировало риски возгорания усилителя при эксплуатации его на повышенной громокости. Ну и заодно, минимизировать случаи полива горящего усилителя, водой из жезеленой кастрюли нетрезвым владельцем.

Распространенные заблуждения об акустических системах постоянного напряжения и их истинных преимуществах. | Атлас IED

Главная страница блога

Акустические системы постоянного напряжения — это сети громкоговорителей, которые подключены к аудиоусилителю с помощью повышающих и понижающих трансформаторов для упрощения расчетов импеданса и минимизации потерь мощности в кабелях динамиков. Подобные системы существуют уже почти 100 лет и были изобретены в ответ на потребность в крупных системах оповещения, требующих большого количества громкоговорителей.Эти системы используют более высокое напряжение и более низкий ток для распределения сигнала с помощью провода более низкого калибра. В Канаде и США эти системы чаще всего называют системами на 70 вольт.

Немногие системы понимают так неправильно, как системы «70 В». Наиболее важной особенностью этих систем является использование трансформаторов, которые используются для «понижения» напряжения сигнала перед подачей его на громкоговоритель. Это необходимо, потому что напряжение сигнала на усилителе «повышается». Об этих системах существует множество мифов.Одни укоренены на самом деле, другие не очень.

Вот некоторые распространенные заблуждения о системах громкоговорителей на 70 В:

70,7 В присутствует постоянно, как и 120 В в бытовой электросети.

Это иллюстрирует разницу между «номинальным» напряжением и «фактическим» напряжением. Аудиосигналы являются динамическими, то есть они присутствуют только тогда, когда что-то воспроизводится в системе.

Эти системы имеют низкое качество звука и подходят только для пейджинга и прослушивания музыки в лифте.

Это незаслуженная репутация, восходящая к истокам систем на 70 В. По мере совершенствования технологии улучшалось и качество вывода в системе на 70 В. Используя высококачественные громкоговорители и трансформаторы, эти системы могут иметь превосходную точность воспроизведения, неотличимую от обычных систем, в которых используются громкоговорители с сопротивлением 8 Ом. Это правда, что используется много низкокачественных систем на 70 В, но это связано с факторами, которые могут ухудшить звук любой звуковой системы, некачественной продукцией, плохим дизайном, неправильной установкой или ошибкой пользователя.Все может быть плохого качества, если все сделано неправильно.

Эти системы имеют дефицит низких частот, потому что вы не можете получить «басы» через трансформатор.

Это еще один миф, уходящий корнями в прошлое, и что технология улучшилась. Современные трансформаторы намного эффективнее воспроизводят низкие частоты с меньшим насыщением и меньшими потерями. Фактически, сегодня существует множество вариантов сабвуфера 70-вольт , которые сделают звучание вашей системы еще лучше.

Вся проводка громкоговорителя должна быть в кабелепроводе.

Это верно только в том случае, если этого требует местное, окружное или государственное регулирование. В некоторых юрисдикциях система на 70 В считается «высоковольтной» и поэтому может потребовать кабелепровода, но это не является стандартом для всех юрисдикций в Соединенных Штатах, поэтому еще раз важно знать правила в тех областях, в которых вы работаете!

Для установки системы на 70 В. требуется дорогостоящий измеритель импеданса.

Измеритель импеданса удобен, но не обязателен.Фактически, одна из причин, по которой эти системы указаны, состоит в том, чтобы избежать рейтингов импеданса и измерений импеданса. Трансформаторы громкоговорителей имеют разные настройки ответвлений мощности в зависимости от трансформатора, который понижает напряжение на громкоговорителе до полезной мощности. Пока общая суммарная мощность громкоговорителей в линии не превышает выходную мощность усилителя, все будет работать безупречно. Для проверки правильности подключения можно использовать измеритель импеданса. Если бы у вас было 10 громкоговорителей с ответвлениями трансформатора, установленными на 15 Вт, это было бы в общей сложности 150 Вт.Используя закон Ома, мы можем взять квадрат напряжения (70 x 70), разделенный на мощность (150), и получить номинальное сопротивление 33,66 Ом. Измеритель импеданса можно подключить к проводке громкоговорителя на усилителе, чтобы убедиться, что он подключен правильно.

Эти системы предназначены только для потолочных громкоговорителей.

Система 70 В — это просто средство распространения сигнала. Это не имеет ничего общего с типом используемого громкоговорителя. Хотя распределение 70 В отлично подходит для потолочных громкоговорителей, усилителю все равно, какие типы громкоговорителей подключены к сети.Совершенно приемлемо использование потолочных громкоговорителей, громкоговорителей для поверхностного монтажа и рупорных громкоговорителей в одной цепи, если это то, что требуется в проекте. Если мощность отводов на громкоговорителях не превышает общую номинальную мощность усилителя, нет ничего плохого в их смешивании.

70-вольтовые системы имеют много фазовых помех и гребенчатую фильтрацию.

Потолочные громкоговорители высокой плотности действительно демонстрируют значительные фазовые помехи и гребенчатую фильтрацию.Это одна из причин, почему они могут обеспечить равномерное звуковое покрытие. В общем, чем больше громкоговорителей, чем больше помех, тем более равномерное покрытие. Распространенная ошибка потолочных систем громкоговорителей — установка слишком малого количества громкоговорителей. По сути, если вмешательство неизбежно, обычно лучше больше, чем меньше. Такой подход «ковровой бомбы» к звуковому покрытию хорошо работает в некоторых приложениях, таких как конференц-залы, ворота аэропортов и магазины одежды. Более хирургический подход, сводящий к минимуму фазовые помехи, предпочтителен для театров, зрительных залов, студий и операционных.Тем не менее, помехи не имеют ничего общего с тем, подключены ли громкоговорители к линии 70 В. Было бы столько же помех, если бы каждый громкоговоритель имел сопротивление 8 Ом и имел собственный усилитель.

Сделанная правильно, трансформаторно-распределенная акустическая система — прекрасная стрела в колчане разработчика звуковой системы. Они служат нашей отрасли почти столетие и, вероятно, будут служить и в следующем. Просто нет другого способа выполнить то, что могут сделать эти системы:

  • Управляйте множеством громкоговорителей от одного усилителя.
  • Для этого используйте кабель относительно небольшого сечения.
  • Настройте громкость каждого динамика независимо.

Защита громкоговорителей и отключение звука

Защита громкоговорителей и отключение звука
Elliott Sound Products пр.33

© Октябрь 1999 г., Род Эллиотт (ESP)
Обновлено сентябрь 2020 г.

верхний
Обратите внимание: плат доступны для последней версии этого проекта.Нажмите на картинку для более подробной информации.
Введение

Обратите внимание, что версия печатной платы отличается от схемы, показанной в этой статье. На самом деле это проще, но выполняет те же функции. Полная информация доступна при покупке платы. Последние платы — это Revision-A и немного отличаются от предыдущей версии. Базовая схема схемы показана на рисунке 5.

PCB P33 может использоваться с парой реле Project 198 MOSFET, что особенно полезно, если ваш усилитель имеет напряжение питания более ± 35 В.При высоком напряжении на контактах реле возникает дуга (не может быть), и если напряжение короткого замыкания составляет около 60 В или более, реле не сможет погасить дугу. Графическое свидетельство этого см. Ниже в разделе «Отказ реле». Я также провел много тестов на реле, и деструктивная дуга почти гарантирована при напряжении 60 В при 10 А или более (при условии, что сопротивление звуковой катушки составляет 5,6 Ом). Добавлен новый подраздел, чтобы показать, как использовать релейные платы P198 MOSFET с P33,

.

Многие усилители Hi-Fi и профессиональные усилители мощности (и системы громкоговорителей) обеспечивают некоторую защиту либо для защиты громкоговорителей от неисправности усилителя, либо наоборот.Некоторые из них реализованы на очень простом уровне — например, использование «полисыключателя». Поликнопочный переключатель — это нелинейный резистор, имеющий низкое сопротивление при нормальных температурах и гораздо более высокое сопротивление при определенной температуре. В отличие от «обычных» термисторов, характеристики которых более или менее линейны, поли- переключатель имеет быстрое переключение при достижении предела.

Мне не нравятся поли-переключатели, потому что я знаю, что введение нелинейного элемента добавит некоторую степень искажения и из-за конечного сопротивления ухудшит демпфирование.Это (то есть демпфирование) обычно не является проблемой IMO, но для многих аудиофилов это имеет первостепенное значение. (Однако я не буду здесь приводить этот аргумент — дополнительную информацию см. В разделе «Импеданс».)

Основное требование к устройству защиты динамика требует, чтобы любой потенциально опасный поток постоянного тока к динамикам прерывался как можно быстрее. Есть несколько проблем, которые необходимо решить, чтобы гарантировать, что это произойдет достаточно быстро, чтобы предотвратить повреждение драйверов громкоговорителей, и это становится более критичным, если используется система с двойным усилением (и тем более с триампером).

Естественно, на предохранители можно просто положиться. Хотя они также имеют конечное сопротивление, оно невелико, и использование быстродействующих предохранителей может быть весьма эффективным. Рейтинг становится довольно критическим, и типы быстрых ударов важны. Проблема с этим подходом заключается в том, что, если предохранитель имеет подходящие характеристики для обеспечения хорошей защиты, он будет подвергаться значительному термическому напряжению, поскольку он работает почти на пределе своих возможностей. Усталость металла приведет к нежелательному перегоранию предохранителя просто потому, что он «устал» от постоянного изгиба, вызванного колебаниями температуры.Я знаю это по личному опыту работы с громкоговорителями, которые у меня были много лет назад — они использовали предохранители для защиты твитеров. Неприятные отказы предохранителей были обычным явлением (и очень раздражали).

Этот проект объясняет принципы и показывает подходящий метод обнаружения, который может быть применен. Скорость используемого реле является еще одним критическим фактором, и мы увидим, что традиционный метод предотвращения разрушения управляющего транзистора обратной ЭДС реле также замедляет реакцию до потенциально неприемлемой степени.

Схема также включает функцию отключения звука, при которой динамики остаются отключенными до тех пор, пока усилитель не стабилизируется, и отключаются динамики как можно быстрее после отключения питания, чтобы предотвратить шумы выключения, которые генерируют некоторые усилители. Они могут варьироваться от низкого уровня звука через 5-10 секунд после выключения питания до свиста, писка и других странных шумов, которые я слышал от усилителей на протяжении многих лет.


Обратите внимание: Хотя схему, показанную здесь, и версию печатной платы можно заставить работать нормально при высоких напряжениях питания (например, ± 70 В, использоваться с P101 и многими другими усилителями), имейте в виду, что большинство реле не смогут отключить это напряжение и результирующий ток ниже неисправности.Постоянный ток вызывает значительную дугу, и это более чем способно просто сжечь контакты реле.

Если вам повезет, предохранители перегорят раньше, чем реле выйдет из строя, но я бы не стал на это рассчитывать. Хотя доступны реле, способные отключать, возможно, 10 А или более при 70 В постоянного тока, они будут дорогими и, вероятно, их будет трудно достать. К сожалению, вариантов альтернативного метода немного. Статья о реле предлагает некоторые решения.


Используя реле, как показано ниже (с нормально разомкнутым контактом, подключенным к земле), дуга будет отведена от динамика и будет заземлена, но реле почти наверняка будет разрушено, если не будет отключен специализированный компонент. использовал.Несмотря на кажущуюся простоту, реле на самом деле представляют собой довольно сложные устройства. На разработку контактов уходит много инженерных усилий, но использование их сверх номинальных значений производителя означает, что нет ничего определенного. Дополнительные сведения см. В статье о реле, состоящей из двух частей.

Убедитесь, что вы понимаете ограничения любой такой схемы (не только моей — то же самое относится ко всем схемам защиты громкоговорителей). Сами схемы не ограничены, но реле, безусловно, ограничены.


Реле MOSFET

Если ваш усилитель имеет напряжение питания выше ± 35 В, вы можете рассмотреть возможность использования реле Project 198 MOSFET. Вы просто соединяете пару печатных плат с полевыми МОП-транзисторами, соответствующими вашим требованиям, а также микросхему и несколько других частей. При оптимальном выборе полевых МОП-транзисторов отключение усилителя с источниками питания ± 100 В постоянного тока не проблема — это усилитель 600 Вт / 8 Ом (1,2 кВт / 4 Ом), и дуги не может быть, потому что переключение выполняется с помощью полевых МОП-транзисторов, а не электромеханических контактов. .

Для стереоусилителя вам понадобятся две платы P198 (и ни у кого другого нет , что-то вроде ), и вам нужно всего около 10 мА, чтобы управлять ими. Две входные секции просто подключаются последовательно с ограничивающим резистором в соответствии с напряжением питания платы P33. Реле MOSFET идеально подходит для любых напряжений усилителя, с которыми вы столкнетесь, и полностью изолировано, поэтому не может быть нежелательных взаимодействий.

Если вы используете полевые МОП-транзисторы с сопротивлением включения (R DS-On ) менее 10 мОм, среднее рассеивание будет меньше 1 Вт каждый, даже при выходном токе 10 А RMS (мощность 400 Вт / 4 Ом, непрерывная). — крайне маловероятно с любым нормальным программным материалом ).Это новая печатная плата из линейки ESP, и она единственная в своем роде, которую вы можете купить. Он специально разработан для переменного тока — большинство из них, которые вы можете купить, предназначены только для постоянного тока, а несколько доступных версий переменного тока имеют очень медленное включение и могут не поддерживать высокий ток. Если будет достаточно интереса, я смогу сделать больше и снизить цену.


Почему DC убивает динамики

Существует бесчисленное множество заблуждений относительно того, что происходит с приводом громкоговорителя, когда он подвергается воздействию постоянного тока.Небольшие уровни постоянного тока (менее 1 В) обычно не более чем слегка смещают конус, и принято считать, что ± 100 мВ — это максимум, который должен иметь место. Это соответствует мощности 2,5 мВт при нагрузке 4 Ом. Усилитель 100 Вт / 8 Ом обычно использует источники питания ± 42 В, хотя некоторые используют до ± 56 В постоянного тока.

Когда усилитель выдает максимальную мощность, выходное напряжение составляет 28 В (среднеквадратичное значение), что предполагает устойчивый тон. Мы не слушаем ровные тона (особенно при 100 Вт!), А музыка имеет динамический диапазон около 10 дБ (хотя у некоторых меньше — 5 дБ — это минимально достижимый минимум.Мы останемся на уровне 10 дБ, что означает, что средняя мощность усилителя составляет 10 Вт с пиковыми значениями 100 Вт. Большинство достойных драйверов могут с этим легко справиться, так что проблем нет. Даже если средняя мощность увеличится до 20 Вт (возможно, с некоторыми серьезными ограничениями), это все равно нормально.

Теперь, если усилитель выйдет из строя, мы можем увидеть, что произойдет. Полный отказ почти всегда связан с криком выходного транзистора, поэтому выходной сигнал усилителя перескакивает с 9 В RMS (10 Вт на 8 Ом) до 42 В постоянного тока. Это мощность 294 Вт, и это непрерывно (динамик имеет сопротивление только при постоянном токе, которое предполагается равным 6 Ом).Это выталкивает звуковую катушку из зазора магнита, и, поскольку она не движется, отсутствует эффективное охлаждение. Звуковая катушка нагреется до опасной температуры за несколько секунд, и если DC не отсоединить быстро, динамик выйдет из строя. Это может включать в себя возгорание!

Ответ — извещатель постоянного тока с реле, которое отключит ток повреждения постоянного тока. Это будет порядка 7А, что более чем достаточно, чтобы заставить почти всех миниатюрных реле поддерживать непрерывную дугу.Если динамик не закорочен реле, ток дуги будет порядка 4 А или более непосредственно на динамик (дуги имеют импеданс, но он сильно варьируется). При постоянной мощности где-то между 100 и 250 Вт и отсутствии движения диффузора выживут очень немногие колонки.

В подавляющем большинстве опубликованных схем , а не показано реле, замыкающее динамик, и защита обеспечивается только при постоянном напряжении 35 В или меньше. Усилители с большей мощностью намного хуже, и нет известного реле, которое могло бы разорвать дугу постоянного тока 70 В при токе не более нескольких сотен миллиампер.Прошло более двадцати лет с тех пор, как представленная здесь конструкция была опубликована, и почти никто другой не обновлял свои неисправные схемы. Чтобы разорвать дугу постоянного тока 70 В при любом вероятном токе, требуется реле с зазором между контактами не менее 1,6 мм — это крайне редко!


Схема

Важно определить самую низкую частоту, которая может быть передана динамику, потому что это определяет задержку, которая должна быть введена, чтобы предотвратить срабатывание схемы защиты низкими частотами (ложное срабатывание).Для практических целей нижний предел частоты в 20 Гц является удовлетворительным для полнодиапазонной системы, и это означает, что необходима минимальная задержка в 25 мс. В действительности, из-за комбинации низких частот и асимметричных сигналов на более высоких частотах обычно требуется большая задержка. К сожалению, чем больше задержка, тем больше риск повреждения драйверов. В полнодиапазонной системе (то есть с использованием пассивных кроссоверов) среднечастотные и высокочастотные динамики будут иметь некоторую защиту с помощью конденсаторов, используемых в кроссоверной сети, но они отсутствуют в системе с двойным или триамперным усилителем.По этой причине важно, чтобы схему можно было легко изменить, чтобы изменить начальную задержку времени до того, как система обнаружит постоянный ток и отключит динамики.

Имейте в виду, что вам нужно будет использовать транзисторы с более высоким напряжением, если усилитель работает при напряжении более ± 60 В. Показанные транзисторы рассчитаны на 65 В, но использовать транзисторы, близкие к предельному напряжению, неразумно. Если вы понимаете схему и знаете, что делаете, достаточно просто запустить схему от более низкого напряжения, если оно доступно.В качестве альтернативы может быть создан простой стабилизированный источник питания для питания самой схемы (но , а не реле, поскольку они потребляют слишком большой ток). Выбор реле становится критически важным для источников высокого напряжения!


Электромонтаж цепи защиты и усилителя

На рисунке выше показано, как схема подключена к усилителю. Обычно для каждого канала используется отдельное реле, и плата P33 часто может использовать основной источник питания усилителя, как показано.Если используется вспомогательный источник питания, он должен быть около 12 В, чтобы соответствовать катушкам реле. Источник питания должен обеспечивать достаточный ток для детектора (всего несколько миллиампер) и реле (обычно около 45 мА каждое, но это зависит от используемых вами реле). Реле должны быть двухходовыми, с нормально разомкнутыми (NO) и нормально замкнутыми (NC) контактами, с нормально замкнутыми контактами, подключенными к заземлению усилителя мощности. Без этого соединения способность реле защищать ваши колонки колеблется от минимальной до нулевой!


Детектор

Это самая важная из функций.Он должен быть способен обнаруживать смещение постоянного тока любой полярности и быть невосприимчивым к эффектам асимметричных сигналов и низких частот. Это обычное требование, и наиболее целесообразно использовать простой (однополюсный) фильтр, чтобы свести сложность к минимуму. При такой компоновке отсечка низких частот около 1 Гц является правильной. Не утомляя вас математикой, лежащей в основе этого, выясняется (в конечном итоге), что фильтр с постоянной времени 1,0 с по-прежнему будет обеспечивать возможность достаточно быстро обнаруживать высокий уровень постоянного тока, но пропускает низкие частоты без срабатывания.При этом питание реле может быть отключено в течение примерно 50 мс с момента, когда выходное напряжение достигает шины питания (это зависит от напряжения питания) — обычно из-за короткого замыкания транзистора в выходном каскаде. Изменяя постоянную времени фильтра, мы можем адаптировать схему для работы на других более высоких частотах, чтобы она подходила для системы с двойным (или триампированием).

Детектор может быть построен с использованием операционного усилителя и будет работать очень хорошо, но при этом возникает необходимость в источниках низкого напряжения в усилителе мощности.Это не всегда возможно (или желательно), поэтому в конструкции используются дискретные транзисторы, чтобы учесть различные напряжения питания, характерные для типичных усилителей мощности.

Схема детектора, показанная на Рисунке 1 [1] , проста и работает хорошо, и, как показано, не будет запускаться с сигналом 30 В RMS на частоте 5 Гц, но работает в течение 60 мс при подаче 30 В постоянного тока и в 50 мс при питании 45 В постоянного тока. . Этого должно быть достаточно для большинства применений и позволяет использовать в фильтре неполяризованный электролитический конденсатор.Они дешевые, маленькие и вполне подходят для этой цели.

ПРИМЕЧАНИЕ: Источники питания (+ ve и -ve), показанные на этих схемах, обычно являются шинами питания усилителя. Не пытайтесь заменить другие расходные материалы, если вы точно не знаете, что делаете, иначе схема может работать неправильно. Это особенно верно для цепи заглушения, но неправильные источники питания также могут (могут) повлиять на цепь обнаружения постоянного тока. Как и большинство моих проектов, он предназначен для опытных строителей.


Рисунок 1 — Базовая схема детектора постоянного тока

Входной фильтр представляет собой простую однополюсную (6 дБ / октаву) версию, и хотя может показаться, что предпочтительнее использовать «лучший» фильтр, двухполюсный (или более) фильтр фактически ухудшит обнаружение постоянного тока. Эта базовая схема не нова (см. Ссылку) и действительно существовала в той или иной форме в течение некоторого времени. Он идеально подходит для наших требований, так как он симметричен, а с входными диодами, как показано, можно использовать один детектор с несколькими усилителями и разными входными постоянными времени для каждого отдельного фильтра.Само устройство при желании может работать от отдельного источника питания, поэтому вся схема защиты может находиться в отдельном корпусе. Регулируемые расходные материалы не требуются, а гудение или другие артефакты не появляются в линиях громкоговорителей. (См. ПРИМЕЧАНИЕ , ПРИМЕЧАНИЕ выше.)

В таблице (ниже) показаны некоторые рекомендуемые значения для фильтра для использования в двух- и трехамперных системах. Вам понадобится один фильтр и два диода для каждого подключенного канала усилителя, а также подходящее количество контактов реле, чтобы справиться со всеми ними.В некоторых случаях это будет означать несколько реле.

Частота (Гц) Значение C1
Полный диапазон 10 мкФ (неполяризованный)
100 Гц 1 мкФ
300 Гц 330 нФ
1 кГц 100 нФ
3 кГц 33 нФ

Входные резисторы (R1 и R2) должны быть оставлены на 100 кОм для всех частот.Хотя можно снизить порог обнаружения, используя более низкое значение, это делает требования фильтра более критичными и может легко сделать обнаружение хуже, чем , а не «лучше». Не используйте обычный электролитический конденсатор для C1, потому что любое небольшое обратное смещение в конечном итоге приведет к его разрушению. Вы можете обнаружить, что некоторые типы музыки (особенно на большой громкости) могут вызвать ложное срабатывание схемы. В этом случае увеличьте значение C1 до максимального значения 47 мкФ.Все, что выше, недопустимо замедлит реакцию.


Рисунок 1A — Базовая схема детектора постоянного тока с однополярным питанием

Схема, показанная выше, предназначена для использования от одного источника питания. Q1 может быть включен положительным напряжением на его базе или отрицательным напряжением , приложенным к эмиттеру. Это основа версии для печатной платы, и это действительно «проверенное и надежное» решение. Все сказанное выше (о двухтранзисторной версии) применимо и здесь. Значения, указанные в таблице, остаются применимыми, как и все другие комментарии и примечания.Единственное отличие — это устранение необходимости в отрицательном питании. Когда C1 / C2 выбраны для полного диапазона, время обнаружения составляет менее 60 мс для положительных или отрицательных напряжений повреждения 25 В, и оно быстрее при более высоких напряжениях повреждения.

Конечно, нет причин не использовать гораздо более сложные схемы. Однако они не обязательно будут работать лучше, а некоторые, которые я видел, не так хороши, несмотря на дополнительную сложность. Стремление к очень низким порогам обнаружения напряжения может показаться как хорошей идеей, но на самом деле это просто означает, что фильтр должен быть более сложным, и он будет медленнее реагировать на «событие» постоянного тока.Помните, что любой детектор постоянного тока никогда не должен активироваться при присутствующей самой низкой интересующей частоте, при любом напряжении вплоть до полной мощности (и, возможно, с учетом некоторой степени ограничения). Однако он по-прежнему должен обнаруживать постоянный ток достаточно быстро, чтобы спасти ваши громкоговорители.


Технические характеристики реле

Реле должно быть достаточно легко достать. По крайней мере, у одного из австралийских поставщиков компонентов есть реле, которые вполне подходят, но не особенно дешевы. Номинальный ток очень важен, и если предположить, что напряжение питания составляет +/- 40 В, это вызовет ток около 6 А в динамике с сопротивлением 8 Ом в случае короткого замыкания транзистора.Хотя 6А может показаться не таким уж большим, это при постоянном токе, и поскольку нет периодов 0 В, как при переменном токе, дуга длиннее, толще и гораздо более разрушительна для контактов, чем тот же ток, использующий переменный ток.

Не поддавайтесь соблазну использовать миниатюрные реле, потому что, если нормальный сигнал динамика переменного тока намного превышает номинальный ток контактов реле, контакты могут свариться вместе — это почти наверняка произойдет, если номинальный ток постоянного тока будет слишком низким. Вы также должны учитывать, что контактное сопротивление является дополнительным сопротивлением в проводе динамика и может повлиять на демпфирование (хотя и очень незначительно) и приведет к небольшим потерям мощности, а миниатюрные типы не подходят в этом отношении.

Я заглянул в каталог одного австралийского поставщика, и у них есть несколько реле с номиналом контакта 10А. Я бы сказал, что что-то меньшее неразумно для долгосрочной надежности. Большинство широко доступных реле имеют катушку 12 В, и это вызовет проблемы, если напряжение питания составляет 30 В или более. Силовые реле часто потребляют значительный ток (обычно> 60 мА), и обычно лучше всего подключать катушки последовательно.

Имейте в виду, что в некоторых районах в воздухе содержится значительное количество серы, и это вызывает сильное потускнение серебряных контактов.Если вы живете в таком районе, было бы целесообразно приобрести герметичные реле, если это возможно, чтобы предотвратить потускнение контактов.

Хорошо известно, что ток, требуемый для активации реле, намного больше, чем ток, необходимый для удержания контактов замкнутыми, и распространенный трюк заключается в использовании схемы «эффективности» для минимизации удерживающего тока реле. Я не считаю, что дополнительная сложность оправдана, и не включала эту возможность. Если вы действительно хотите сделать это правильно, см. Ссылку 1 (ниже).Было заявлено, что эффективная схема также ускоряет время отключения реле из-за более низкого накопленного магнитного поля. Я провел несколько тестов, и экономия в лучшем случае незначительна, хотя с разными реле все может быть иначе.

На рис. 2 показана схема активации реле, включая подключение для сигналов отключения звука и защиты. Никакие компоненты не являются критическими, но некоторые из них необходимо будет модифицировать в зависимости от используемых реле. Я предположил, что потребуется минимум два реле (по одному на каждый канал), и это увеличивает общее напряжение катушки реле до 24 В.Если вы собираетесь использовать более двух (например, четыре однополюсных реле необходимы для системы с двойным усилением), тогда, если напряжение питания составляет 48 В или более, все 4 реле можно соединить последовательно. В большинстве случаев вам нужно будет определить номинал подходящего понижающего резистора по приведенной ниже формуле.

Клемма с надписью «Off» является общей для всех трех модулей, и эти точки просто соединяются вместе, как и соединения питания + ve и -ve. Положительный ток на клемме Off обесточит реле, включив Q1.Это забирает весь базовый ток для Q2, который затем отключается, как и Q3.


Рисунок 2 — Цепь активации реле

R7 и D6 не являются обязательными. Читатель использовал эту схему на усилителе сабвуфера P68 и обнаружил, что схема иногда ложно срабатывает. В конце концов было обнаружено, что с некоторыми сигналами питание резко сократилось, чтобы перезапустить таймер отключения звука. Этого можно избежать, добавив резистор и стабилитрон. R7 и D6 обычно не нужны, но если вы получите ложное срабатывание, их придется добавить.Отсутствие этого раздела просто означает, что D6 не установлен, а R7 заменен ссылкой.

Значение R7 (при необходимости) определяется напряжением питания. Схема отключения звука потребляет очень небольшой ток, поэтому R7 можно рассчитать как …

V R7 = V питание -24 (где 24 — напряжение стабилитрона)
Затем можно рассчитать

R7, исходя из тока стабилитрона 10 мА …

R7 = V R7 / 0,01 (Ом)
P = V R7 ² / R7 (Вт)

Например, при питании 56 В R7 будет 3.2 кОм и рассеивает 0,32 Вт (рекомендуется резистор 1 Вт).

Реле должны быть выключены в кратчайшие сроки, поэтому не следует использовать обычный защитный диод на катушке, поскольку он значительно замедляет реакцию. Вместо этого показанная конструкция по-прежнему защищает транзистор драйвера, но позволяет магнитному полю реле схлопнуться, не создавая тока в катушке (это то, что замедляет срабатывание реле). Я не могу предсказать точную задержку, которой вы достигнете, поскольку выбор подходящего реле не зависит от меня.Вам придется приставать и раздражать своих местных поставщиков, чтобы найти реле с подходящими характеристиками, и быть готовым заплатить неприличную сумму денег за простое электромеханическое устройство.

D5 разряжает C1 при прекращении подачи питания. Это не сильно поможет в случае, когда кто-то выключит питание, а затем снова включит (не то, чтобы кто-то это сделал!), Но сбросит схему намного быстрее, чем это было бы в противном случае.

Дуга постоянного тока может (и действительно) вывести из строя даже реле 10А при некоторых обстоятельствах.Чтобы обеспечить большую защиту динамика, проводка реле на рис. 2 предназначена для замыкания динамика на землю в случае неисправности. Таким образом, даже если контакты имеют дугу, они будут напрямую связаны с землей. Это намного безопаснее (для динамиков), а дуга на землю приведет к срабатыванию предохранителя намного быстрее, чем если бы в цепи была нагрузка 8 Ом. Настоятельно рекомендуется использовать эту схему как нечто само собой разумеющееся. Стоит отметить, что любая система защиты от постоянного тока, в которой , а не , использует этот метод, почти наверняка не сможет защитить громкоговорители с усилителем средней или высокой мощности. (Мои благодарности Филу Эллисону за информацию.)

Вы можете рассмотреть возможность использования двухполюсных реле для RL1 и RL2 с последовательным соединением контактов. Наиболее распространенные реле имеют номинальный ток 10 А, 30 В постоянного тока, и при использовании двух наборов контактов последовательно это (теоретически) увеличивает номинальное напряжение до 60 В постоянного тока. Нормально замкнутые (NC) контакты должны быть подключены к заземлению постоянного тока для максимальной защиты.

Также обратите внимание, что эту схему нельзя использовать, как показано, с реле 12 В, подключенными последовательно, если напряжение питания меньше +/- 24 В (но вы уже это знали)

Чтобы вычислить значение R6, вычтите объединенное напряжение реле из напряжения питания (вы должны знать ток катушки реле!).Чтобы рассчитать ток катушки по ее сопротивлению, используйте следующее (в примерах я принял напряжение 40 В):

I = V / R Где V = напряжение катушки и R = сопротивление катушки
Таким образом, для катушки на 180 Ом (довольно типично) это работает
I = 12/180 = 67 мА
Номинал резистора рассчитывается с помощью:
R = V / I, где V = напряжение, оставшееся после вычитания, а I = ток катушки.
Вам также необходимо определить номинальную мощность резистора:
P = V² / R где V — напряжение, а R — сопротивление.
Опять же, для приведенного выше примера это работает
R = (40 — 24) / 67 мА = 16/0.067 = 239 Ом (220R должно подойти)
P = (16 × 16) / 220 = 1,16 Вт
Таким образом, для достаточного запаса прочности, резистор мощностью 2 Вт следует считать минимальным (лучше 5 Вт).

Чтобы определить транзистор для Q3, сложите напряжение питания и напряжения стабилитрона, чтобы получить максимальное напряжение коллектора и эмиттера. В данном случае это 40 + 48 = 88 Вольт, и я бы посоветовал использовать транзистор с напряжением пробоя не менее 100 В для обеспечения некоторого запаса прочности. MJ350 (номинальное значение 300 В) будет подходить почти (если не) для всех приложений, или вы можете использовать MPSA92 — более низкий ток, но все же он имеет рейтинг 300 В.


Рисунок 2A — Альтернативная защита от обратного ЭДС

На рис. 2A показан альтернативный метод, который можно использовать для гашения обратной ЭДС от реле, но для его правильной реализации полезно (если не обязательно) получить доступ к осциллографу. Если резисторы имеют примерно такое же сопротивление, как и катушки реле, обратная ЭДС должна (!) Быть ограничена примерно до нормального напряжения реле, плюс-минус 50% или около того. В тестах, которые я проводил (см. Тесты ниже) с использованием реле 24 В, обратная ЭДС была ограничена примерно до -30 В, что в большинстве случаев было бы нормально.

Этот метод немного дешевле стабилитрона, но менее предсказуем. Дополнительной альтернативой является использование ограничивающего диода для отрицательного источника питания. 1N4004 между верхом релейной цепочки и источником -ve усилителя ограничит противо-ЭДС до напряжения -ve-источника питания, поэтому для примера это будет -40В. Рассчитываю, что это было бы вполне приемлемо, но не пробовал. Убедитесь, что диод подключен правильно — катод идет к верхней части реле, а анод — к отрицательному питанию.


Отключение звука

Поскольку у нас есть все эти новые схемы, наиболее целесообразно включить функцию отключения звука, чтобы при отключении питания от системы реле открывалось, чтобы не слышать переходные процессы выключения. Аналогичным образом, мы обычно хотим отключить систему примерно на 2 секунды после подачи питания, чтобы также остановить переходные процессы при включении. C1 и R1 в схеме на Рисунке 2 обеспечивают задержку включения, подавая ток на клемму «Выкл.» По мере зарядки C1.После зарядки ток падает до нуля, и Q1 отключается, позволяя Q2 и Q3 включиться, тем самым запитывая реле. (Обратите внимание, что этот таймер не будет сброшен, если питание будет быстро выключено и снова включено, но, поскольку это процедура, которой в любом случае следует избегать, для нее не предусмотрено никаких мер.)

Чтобы сделать это эффективно, мы должны иметь доступ к переменному току от трансформатора усилителя мощности или иметь внешний блок, управляемый главным выключателем питания в системе.В некоторых системах Hi-Fi будет множество различных устройств, которые будут включаться (и выключаться) каждый раз при использовании системы. Я предоставляю читателю решать, какой блок использовать в качестве элемента управления, но предлагаю, чтобы при использовании отдельного предусилителя это мог быть идеальный контроллер для всей системы. К сожалению, Hi-Fi не последовал разумному подходу многих компьютеров с коммутируемым разъемом IEC на задней панели предусилителя для управления усилителями мощности и другими внешними устройствами.(Я сделал это на своем предусилителе, и он очень полезен.)


Рисунок 3 — Детектор потери переменного тока

Детектор мощности не может полагаться на источник постоянного тока, так как это может занять значительное время. Обычный подход заключается в использовании выпрямленного, но несглаженного выхода вторичной обмотки трансформатора. Поскольку он не сглаживается, он мгновенно исчезает при отключении питания, и это идеально. На рисунке 3 показана базовая схема, при этом привод реле будет удален примерно через 50 мсек после отключения питания.Мы могли бы сделать это быстрее, но в этом мало смысла.

Схема просто использует импульсы тока для поддержания разряда конденсатора через Q1. Когда импульсы прекращаются, крышка заряжается до тех пор, пока не будет достигнуто пороговое напряжение на клемме «Выкл.» (0,65 В), и реле выключатся. После первого включения питания схема таймера активирует реле примерно через 4 секунды (обычно). При желании его можно увеличить, увеличив значение C1 на рисунке 2.


Тесты

Я провел несколько тестов, чтобы увидеть, насколько быстро могут работать реле.Результаты были чем-то вроде откровения (а я знал о дополнительной задержке, вызванной диодом!). Реле, которое я использовал, представляло собой небольшую катушку на 24 В с катушкой 730 Ом и надежными контактами (не менее 10 А). Без защиты от обратной ЭДС реле размыкало контакты за 1,2 мс — это намного быстрее, чем я ожидал, но обратная ЭДС вышла за пределы шкалы моего осциллографа, и я предполагаю, что напряжение было выше 500 В. . При добавлении диода время отпускания увеличилось до 7.2 мс, что является значительным увеличением, и, конечно же, не было обратной ЭДС (хорошо, было 0,65 В, но мы можем это игнорировать). При использовании метода диод / резистор, описанного выше, время отпускания составляло 3,5 мс, а максимальная обратная ЭДС составляла -30 В, так что это кажется подходящим компромиссом.

Я не тестировал метод стабилитрона до публикации, но я знаю, что он работает так же, как комбинация диод / резистор. На графиках ниже показано поведение схемы с резистором и диодом и без них.Расчетное значение 500 В или более типично для всех реле, поэтому диод всегда включен. Такое напряжение мгновенно разрушит большинство транзисторов. Это точно такой же процесс, который используется в стандартной системе зажигания Kettering, используемой в автомобилях, но без вторичной обмотки или трансформатора обратного хода, используемого в горизонтальной выходной секции телевизора с ЭЛТ.


Рисунок 4 — Напряжение реле

График с надписью «Контакты» является репрезентативным и не масштабируется.Пиковое напряжение реле (вверху слева) превысило входной диапазон моего осциллографа (и мне было лень настроить внешний аттенюатор), и, как показано, оно отключено на моем пределе измерения. По моим оценкам, напряжение больше 500 В.

Обратите внимание, что изгиб кривой напряжения реле вызван тем, что якорь (бит, который движется) отходит от полюсного наконечника реле и снижает индуктивность. Это заставляет накопленный магнитный заряд снова пытаться увеличить напряжение, но он поглощается сопротивлением и быстро рассеивается.Контакты размыкаются в точке размыкания ранее замкнутого магнитного поля по мере удаления якоря от полюсного наконечника. Как видно, это 3,4 мс после отключения питания реле.

Эти графики являются репрезентативными, так как разные реле будут иметь разные характеристики. Как отмечалось выше, я не могу предсказать, какой тип реле вы сможете получить, но можно ожидать, что его поведение будет похоже на показанное. Все испытания проводились с использованием реле 24 В с контактами 10 А.После замыкания контакта я также измерил 2,5 мс отскока контакта. Если к моменту замыкания контактов ваш усилитель стабилен, этого будет совершенно не слышно.


Версия печатной платы

Версия печатной платы немного отличается от показанных схем, но все равно выполняет все функции. Он включает в себя детектор «потери переменного тока» для отключения звука усилителя мощности при выключении питания, что очень полезно для усилителей, которые настаивают на громком «ударе» через несколько секунд после выключения. Ни один из проектов ESP не делает этого (по крайней мере, ни один из них не имеет доступной печатной платы), но довольно много усилителей это делают.


Рисунок 5 — Версия печатной платы схемы

Схема показана без значений компонентов, но полная информация представлена ​​на защищенном сайте, доступном для тех, кто покупает плату. В нем используется небольшое количество дешевых деталей, и он зарекомендовал себя как очень надежный в использовании. Печатная плата очень мала, но не включает реле, так как они должны располагаться как можно ближе к выходным клеммам на шасси.


Отказ реле

Вероятность отказа реле проиллюстрирована ниже.Когда возникает дуга постоянного тока, температуры значительно превышают те, которые может выдержать любой нормальный металл, и расплавление является обычным явлением. Показанная фотография была отправлена ​​читателем и не из схемы P33. Однако процесс идентичен, и реле может легко стать похожим на то, что на фотографии.


Рисунок 6 — Расплавление реле из-за дуги постоянного тока

Если усилители мощности оснащены предохранителями, повреждения должны быть намного меньше. При условии, что предохранитель срабатывает достаточно быстро, энергия дуги по-прежнему будет достаточно высокой, но с значительно меньшей продолжительностью.Это ограничивает повреждение реле. Однако реле по-прежнему намного дешевле, чем новый драйвер громкоговорителя (или драйверы), поэтому не имеет особого значения, если реле принесено в жертву для «общего блага».

Испытанное и проверенное решение — использовать два набора контактов последовательно. Большинство реле имеют максимальное напряжение 30 В постоянного тока при номинальном токе, поэтому два последовательных комплекта могут прерывать 60 В постоянного тока. Конденсатор (даже 1 мкФ достаточно) на нормально разомкнутых контактах может гарантировать минимальную дугу (или ее отсутствие) даже при напряжениях выше максимума реле.Я тестировал реле с 1 мкФ на контактах при 60 В с напряжением около 15 А (нагрузка 4 Ом) без дуги, но вам нужно провести свои собственные тесты. Имейте в виду, что конденсатор (если он используется) допускает некоторую «утечку» сигнала в динамик.

Вам также необходимо знать (и предпочтительно очень ), что конденсатор, подключенный к контактам, в конечном итоге подключается непосредственно от выхода усилителя к земле. Если вы сделаете это, очень много усилителей будут колебаться, поэтому тщательное тестирование очень важно.Схема защиты, которая повреждает усилитель, бесполезна. Этого не происходит, если нормально замкнутый контакт реле не заземлен, но это снижает способность цепи защищать динамики. Я настоятельно рекомендую вам прочитать статьи о Relays (Часть I и Часть II).


Рисунок 7 — Контакты реле в серии

Если вы используете реле промышленного класса DPDT (с расстоянием между контактами 0,8 мм), подключенное, как показано (реле того же класса, что и на рисунке 6), я убедился, что оно может выдерживать до 60 В постоянного тока при токе короткого замыкания около 16 А.Одиночный набор контактов с разделением 0,8 мм будет просто дугой ( сильно ), и это также было подтверждено лабораторными испытаниями. Стандартные миниатюрные реле обычно имеют расстояние между контактами не более 0,4 мм, и они не могут выдерживать возникающую дугу. Контактный узел реле испарится!


P33 с реле P198 MOSFET

Как описано выше, дуги высокого напряжения очень разрушительны, и хотя у может быть с парой последовательно соединенных контактов, это все же ограничивает напряжение питания примерно до ± 60 В.Этого будет достаточно для большинства дизайнов ESP, так как я не рекомендую использовать больше ни для одного из опубликованных дизайнов. Однако, вероятно, многим понравится идея твердотельного реле, которое не может дуги , независимо от напряжения.


Рисунок 8 — Версия печатной платы схемы с реле P198 MOSFET

Рекомендуемая микросхема для плат P198 — Si8752, в которой используется «эмуляция диода», и ограничивающие резисторы необходимо выбирать для тока 10 мА.Поскольку эти две платы подключены последовательно, каждая плата P198 будет получать половину общего напряжения питания. Например, рекомендуемый ток составляет 10 мА, поэтому, если питание на P33 составляет 12 В, каждый модуль P198 будет использовать резистор 390 Ом в позиции R3 (только один резистор используется для микросхемы драйвера Si8752). Вы также можете использовать 330 Ом, что обеспечит немного больше тока).

Это также будет работать с более высокими напряжениями, и формулы, показанные выше, могут быть использованы. Единственная разница в том, что общее напряжение снижается в 4 раза.4 В (2,2 В для каждого Si8752), а ток установлен на 10 мА (± 2 мА). Использование большего тока через Si8752 только ускоряет его включение — это не влияет на общую производительность схемы отключения / защиты. Малый ток потребления (по сравнению с реле) значительно упрощает работу главного переключателя (Q4), а также снижает общее потребление тока. В остальном схема P33 ведет себя нормально.


Список литературы
  1. D. Самозатухающие реле, Electronics World, июль 1999 г.
  2. Реле
  3. , выбор и использование (Часть 1) — ESP (также см. Часть 2, которая конкретно касается контактной дуги)
  4. Фото реле предоставлено Бобом


Основной индекс Projects Index
Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и © 1999. Воспроизведение или повторная публикация любыми средствами, электронными, механическими или электромеханическими, строго запрещены в соответствии с Международные законы об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только для личного использования, а также разрешает сделать одну (1) копию для справки при создании проекта. Коммерческое использование запрещено без письменного разрешения Рода Эллиотта.

Журнал изменений: Обновления: страница создана и авторские права © октябрь 99./ ноя 99 — добавлена ​​информация о потускнении серой и комментарий о том, что таймер отключения звука не сбрасывается быстро. / Август 00 — добавлены заземленные контакты для дополнительной защиты динамика. / Сен. 06 — Добавлены R7 и D6 на Рисунок 2, измененный текст, очищенные изображения. / Январь 07 — Добавлена ​​информация о сбое реле. / 17 ноября — Добавлен Рисунок 1A и соответствующий текст. / Июль 2019 — добавлен Рисунок 6. / Август 2020 — Включено комментарии к контактам в серии (раздел неисправности реле).


Аудиосистемы с постоянным напряжением (70 В) для начинающих

Распределение громкоговорителей с высоким импедансом

Системы распределения звука, особенно те, которые обычно используются в универмагах, на складах, вокруг гоночных трасс и т. Д., Требуют наличия большого количества громкоговорителей от одного аудиоусилителя по длинным проводам громкоговорителей. Конечно, можно подключить 20 или 30 динамиков последовательно / параллельно, чтобы достичь разумного импеданса нагрузки динамика для усилителя.Но система этого типа может быть сложной в установке и устранении неполадок, а также может быть ненадежной и негибкой. Для решения этих и ряда других возможных проблем обычно используется система распределения звука с «постоянным напряжением» или «высоким импедансом». Эти системы также обозначаются по номинальному напряжению, причем наиболее распространенными являются системы «70 вольт» и «25 вольт».

В основе этих систем лежит преобразование импеданса и напряжения, которое позволяет одному усилителю управлять множеством динамиков.Усилители, разработанные для этих систем, обычно являются монофоническими (одноканальными), а не стерео. Они отличаются от «стандартных» усилителей мощности звука тем, что на выходе усилителя используется большой трансформатор. «Нагрузка» усилителя — это входная или «первичная» сторона этого трансформатора. Выходная или «вторичная» сторона трансформатора подключена ко всем динамикам параллельно. Это означает, что электрически положительный выход вторичной обмотки подключен к положительной стороне каждого динамика, а отрицательный — к отрицательной стороне каждого динамика.Провод можно проложить от динамика к динамику или его можно легко разделить на динамики в другом месте.

Пришло время немного теории. Чаще всего мощность рассчитывается путем умножения напряжения в цепи на ток, протекающий по ней. Таким образом, схема на 6 Вт может иметь 2 ампера тока от 3 вольт или 3 ампера тока от 2 вольт. Один усилитель на 6 вольт также будет 6 Вт. Трансформатор в усилителе на 70 В спроектирован таким образом, что напряжение от усилителя во вторичной обмотке значительно увеличивается, обычно 70.7 вольт на максимум, но ток сильно снижен. Таким образом, выходная мощность усилителя такая же, просто преобразована от более низкого напряжения / более высокого тока к более высокому напряжению / более низкому току. Усилители перегреваются из-за чрезмерного протекания тока, поэтому логично предположить, что возможность снизить ток и увеличить напряжение в нашей акустической системе позволит одному усилителю управлять многими динамиками. Кстати, 2,83 В, приложенные к 8-омному динамику, равны 1 Вт мощности.

К каждому динамику в системе 70 В прикреплен еще один трансформатор, который изменяет мощность обратно на «более низкое напряжение / более высокий ток», чтобы он мог управлять динамиком 8 Ом.Эти трансформаторы обычно имеют два выходных ответвления: один для динамиков на 8 Ом, а другой для динамиков на 4 Ом. Обычно есть четыре касания ввода на выбор … подробнее об этом чуть позже.

Мощность проще

Мы можем спроектировать и проанализировать аудиосистему на 70 В с точки зрения импеданса (в омах, для экспертов), но используя мощность (в ваттах, для всех остальных), чтобы получить тот же конечный результат определенно более прямолинейный. Мощность любого усилителя мощности 70 В всегда указывается производителем.Большинство из них от 20 Вт до примерно 100 Вт. Трансформатор на каждом из динамиков в системе обычно имеет четыре ответвления с разной мощностью на вторичной обмотке, часто в диапазоне от ½ Вт до 30 Вт или более. Если каждый из 10 динамиков был подключен к усилителю с помощью ответвителя мощностью 1 Вт, то при полной мощности они будут потреблять от усилителя 10 Вт. Если бы 10 динамиков были подключены к ответвлению мощностью 2 Вт, потреблялось бы 20 Вт. Каждый динамик можно настроить на любую доступную мощность. Чем выше мощность, тем громче он будет звучать при заданной настройке регулятора громкости усилителя.Для некоторых динамиков может потребоваться установить более низкий или более высокий уровень мощности в зависимости от местоположения, окружающего шума и расстояния от людей.

Для обеспечения стабильности и длительного срока службы сумма ответвлений мощности на всех подключенных динамиках не должна превышать примерно 80% номинальной мощности усилителя. Таким образом, 40 динамиков, установленных на их 2-ваттный ответвитель, будут равны 80 Вт и могут безопасно питаться от 100-ваттного усилителя.

Преимущества систем распределения звука 70 В (высокоомное)
  • Все трансформаторы громкоговорителей подключаются параллельно к выходу усилителя, что упрощает подключение.
  • При выходе из строя одного или нескольких динамиков остальные динамики продолжают работать, как и раньше.
  • Трансформаторы громкоговорителей обычно имеют разные отводы первичной обмотки, позволяющие выбирать разные уровни мощности (и, следовательно, общую громкость) для каждого громкоговорителя. Уровень мощности отдельного громкоговорителя можно легко отрегулировать после установки системы. Использование трансформаторов с переключателем позволяет регулировать громкость отдельных громкоговорителей. Существуют также аттенюаторы настенного типа, позволяющие регулировать громкость динамика или даже нескольких динамиков локально.
  • Добавление или удаление динамиков из системы не приводит к изменению уровня сигнала / громкости других динамиков, поскольку выходное напряжение усилителя является постоянным. Это делает добавление или удаление громкоговорителей не имеющим никакого значения для работы остальной системы, пока добавленные громкоговорители не перегружают усилитель.
  • Высокоомные системы постоянного напряжения легко преодолевают номинальное сопротивление длинных проводов акустических систем. Поскольку ток очень слабый, можно использовать провод громкоговорителя небольшого калибра без потери производительности.Чаще всего используются акустические провода сечением от 18 до 14 AWG.

Отводы выходного напряжения с оповещением

Выходы 100 В и даже 140 В можно найти на некоторых из этих усилителей-распределителей. Выход 25 В можно использовать там, где нужно использовать меньше динамиков, а провода не очень длинные, например, в кабинете врача. Системы на 100 В и 140 В часто используются на спортивных аренах, полях для гольфа, парках развлечений и т. Д., Где громкоговорители широко распространены, требуются более высокие уровни громкости, а длина проводов громкоговорителей может легко превышать 100 ярдов.

Источники звука

В этих системах, конечно, есть ряд общих функций, которые влияют на то, как они работают и что они могут делать. Они могут быть такими простыми, как наличие одного микрофона для пейджинга, фоновой музыки из различных источников, включая проигрыватели компакт-дисков, плееры iPod, спутниковый канал и т. Д., А также интерфейс телефонной системы. Усилители сильно различаются по своим функциям, но самые простые будут иметь базовые регуляторы громкости и тембра, микрофонный вход и стандартные разъемы RCA для аудиовхода.Для базовых систем фоновой музыки можно использовать простой домашний аудиоприемник для приема радио AM / FM и входов для CD или кассетного плеера. Такие приемники будут иметь вспомогательный или линейный выход на магнитной ленте, который можно направить на усилитель-распределитель с помощью стандартного соединительного кабеля RCA.

Более сложные системы имеют схемы приоритета, которые автоматически уменьшают или отключают музыку во время пейджинга. Они также могут взаимодействовать с телефонной системой, так что удерживаемая музыка такая же, как и фоновая, а пейджинг может осуществляться с любого телефона.Сложные системы с несколькими зонами могут позволить различную пейджинговую связь, музыку и управление в каждой зоне и управлять ими отдельно.

Динамики

Самый распространенный динамик в офисах, классах и т. Д. — это стандартный потолочный динамик 8 дюймов. Они часто поставляются с перегородкой (решеткой) и присоединенным трансформатором и предназначены для установки в подвесной потолок. Большинство плиток для подвесного потолка недостаточно прочны, чтобы выдержать вес динамика, поэтому используется «мост» подвесного потолка, позволяющий каркасу потолка поддерживать динамик и перегородку.Также есть задние крышки для динамиков, называемые «цилиндрами». Это не обязательно для наилучшей работы динамика, хотя может потребоваться, чтобы не допустить попадания мусора в заднюю часть диффузора динамика, или, возможно, это требуется местными электротехническими или противопожарными нормами. Из-за некоторых требований кодекса мосты и цилиндры доступны в одобренной UL металлической и пластиковой конструкции. Эти колонки различаются по цене и, конечно же, по качеству звука.

Для обеспечения наилучшего качества звука системы на 70 В можно использовать с любыми высококачественными динамиками, включая встраиваемые в стену или потолочные динамики.Эти динамики предназначены для установки непосредственно в гипсокартон, который достаточно прочен, чтобы их выдержать. Трансформаторы можно приобрести отдельно и добавить к любой такой колонке, если они не идут в комплекте. Тем не менее, системы на 70 В обычно не используются в домашних системах распределения звука, поскольку существует ряд других вариантов, которые могут обеспечить лучшее качество звука и функции.

Для наружных громкоговорителей используются рупорные громкоговорители, которые направляют и фокусируют звук в нужной зоне.Это повышает эффективность, поскольку звуковая энергия не тратится впустую, когда она не нужна или не нужна. Спецификации этих динамиков обычно включают вертикальный и горизонтальный углы рассеивания или рупорную линзу. Эта информация используется для определения расстояния, на котором находится динамик, и его оптимального положения для наилучшего покрытия. Эти динамики лучше всего подходят для устной речи (диалог или объявление). Как правило, они не обладают низкочастотной характеристикой, чтобы музыка звучала естественно. Они изготовлены из материалов, которые делают их пригодными для постоянного использования на открытом воздухе в любую погоду.

Understanding Voltage.indd

% PDF-1.3 % 1 0 объект >] / Pages 3 0 R / Type / Catalog / ViewerPreferences >>> эндобдж 2 0 obj > поток uuid: fa63908e-7614-c84f-911a-a5a3a320a531adobe: docid: indd: f57f59cb-0b67-11de-afa8-b5187854f4d7xmp.id: 30123e79-8d8b-499c-98e9-26cdiPROPOFF-499c-98e9-26cdiDa8-pdf1cda9: 86850f887758xmp.did: 56951b49-a386-4fcc-b36b-ff79c102181cadobe: docid: indd: f57f59cb-0b67-11de-afa8-b5187854f4d7default

  • преобразовано из приложения / x-indesignAsh в приложение CC / Macindesign / pdf, преобразованное из приложения / x-indesign : 41: 25 + 01: 00
  • 2016-04-25T11: 41: 25 + 01: 002016-04-25T11: 41: 27 + 01: 002016-04-25T11: 41: 27 + 01: 00 Приложение Adobe InDesign CC 2014 (Macintosh) / pdf
  • Общие сведения о напряжении.indd
  • Библиотека Adobe PDF 11.0FalsePDF / X-1: 2001PDF / X-1: 2001PDF / X-1a: 2001 конечный поток эндобдж 3 0 obj > эндобдж 6 0 obj > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / TrimBox [0.0 0.0 595.276 790.866] / Type / Page >> эндобдж 7 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / TrimBox [0.0 0.0 595.276 790.866] / Type / Page >> эндобдж 8 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / TrimBox [0.0 0,0 595,276 790,866] / Тип / Страница >> эндобдж 9 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / TrimBox [0.0 0.0 595.276 790.866] / Type / Page >> эндобдж 10 0 obj > / Font> / ProcSet [/ PDF / Text] / XObject >>> / TrimBox [0.0 0.0 595.276 790.866] / Type / Page >> эндобдж 11 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / TrimBox [0.0 0.0 595.276 790.866] / Type / Page >> эндобдж 12 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / TrimBox [0.\ R \ V ߔ wqrjx {M ؿ EzPr = sfjgA% R

    4 «? Xx; Blr» Kn / VB

    % PDF-1.6 % 7 0 объект > эндобдж xref 7 80 0000000016 00000 н. 0000002207 00000 н. 0000002322 00000 н. 0000002363 00000 н. 0000002485 00000 н. 0000002846 00000 н. 0000003172 00000 н. 0000003849 00000 н. 0000004378 00000 п. 0000004413 00000 н. 0000005738 00000 н. 0000007244 00000 н. 0000008566 00000 н. 0000009354 00000 п. 0000010689 00000 п. 0000012088 00000 п. 0000013070 00000 п. 0000013254 00000 п. 0000013755 00000 п. 0000015179 00000 п. 0000016314 00000 п. 0000016863 00000 п. 0000017429 00000 п. 0000018004 00000 п. 0000018612 00000 п. 0000019306 00000 п. 0000019894 00000 п. 0000059872 00000 п. 0000062564 00000 н. 0000093892 00000 п. 0000100092 00000 н. 0000164337 00000 н. 0000173324 00000 н. 0000179524 00000 н. 0000198162 00000 н. 0000203323 00000 н. 0000203764 00000 н. 0000204121 00000 н. 0000204434 00000 н. 0000207928 00000 н. 0000208305 00000 н. 0000208700 00000 н. 0000208959 00000 н. 0000211826 00000 н. 0000212155 00000 н. 0000212562 00000 н. 21F1LgLbz35C 6 и W.yFo (L,

    Новые сведения об опасностях использования слишком маленьких усилителей мощности — HARMAN Professional Solutions Insights

    Нас часто спрашивают, какой размер усилителя мощности мы рекомендуем для конкретной пассивной (т. е. без источника питания) модели громкоговорителей. В общем, рекомендуется выбрать усилитель, который может выдавать мощность, равную удвоенной постоянной средней номинальной мощности динамика. Это означает, что динамик с номинальным сопротивлением 8 Ом и непрерывной средней номинальной мощностью 300 Вт, например , потребуется усилитель, который может производить 600 Вт при нагрузке 8 Ом.

    Почему мы рекомендуем усилитель мощности в два раза больше динамика? Короткий ответ заключается в том, что качественный профессиональный громкоговоритель может справиться с переходными пиками, превышающими его номинальную мощность, если усилитель может выдавать эти пики без искажений. Использование усилителя с дополнительным запасом мощности помогает гарантировать, что только чистая, неискаженная мощность будет поступать на громкоговоритель.

    Чтобы получить более полный ответ, несколько десятилетий назад компания JBL опубликовала техническую записку, в которой более подробно рассматриваются недостатки использования слишком маленького усилителя мощности.Это называется «Опасность: низкое энергопотребление». Этот принцип так же актуален сегодня, как и тогда, когда впервые была представлена ​​техническая записка. Однако мы хотели обновить и модернизировать содержание Технической записки, потому что в ней были ссылки на типы вспомогательного оборудования, которые больше не используются сегодня, и потому что в нем не упоминались некоторые более общие элементы, которые используются в сегодняшних звуковых системах. Примером может служить добавление объяснения недостатков чрезмерной зависимости от ограничителей для защиты громкоговорителей и ложного впечатления о том, что добавление ограничителя теперь позволяет использовать меньший усилитель.Вот расширенный вид предстоящей версии Tech Note:

    Опасность: низкое энергопотребление — обновлено для современных звуковых систем

    Слишком низкая мощность усилителя может произвести «слишком много»
    Иногда мы слышим о владельцах громкоговорителей, которые повреждают высокочастотные компоненты своих акустических систем, используя усилители, рассчитанные на меньше — вместо больше — выходная мощность, чем рекомендуется. Понятно, что они могут задаться вопросом, почему такой усилитель может фактически сжечь компоненты, если акустическая система рассчитана на большую мощность.Характеристики громкоговорителя верны при условии, что усилитель не перегружен. Но это очень важное предостережение — не переусердствуйте с усилителем. Слишком сильное управление усилителем, чтобы получить от него более высокий уровень звука (воспринимаемого или реального), может повредить некоторые компоненты, особенно высокочастотные компоненты.

    Чтобы понять это более четко, необходимо понять природу музыки, поскольку она связана с мощностью усилителя и искажениями.

    Природа музыки
    Не все музыкальные ноты одинаковы.В нижних регистрах музыки гораздо больше мощности, чем в средних и высоких частотах. Если мы рассмотрим прилагаемый график, мы увидим, что содержание энергии высоких частот (6 кГц и выше) обычно на 10-20 дБ меньше, чем басовых и средних частот. Следовательно, даже если мы допустим пики в 10 дБ в высокочастотном программном материале, что является обычным явлением, высокочастотный драйвер системы будет вынужден обрабатывать только около одной десятой мощности, которую должны составлять низкочастотные и среднечастотные компоненты. поддерживать.

    Это естественное распределение музыкальной энергии означает, например, что акустическая система, способная обрабатывать 100 Вт, должна иметь высокочастотный блок, способный обрабатывать 10 Вт (что составляет -10 дБ) в частотной области, где естественное распределение контента На 10 дБ ниже. Таким образом, если высокочастотный блок предназначен для работы с мощностью 20 Вт в этом диапазоне, мы обеспечиваем 100% запас прочности. В результате возможности компонентов акустической системы параллельны естественному распределению энергии музыки.

    Энергетическое распределение типичной рок- и электронной музыки. Оркестровая музыка имеет тенденцию повторять тот же общий контур, хотя и с немного уменьшенным содержанием низких частот.

    Природа мощности усилителя
    Характеристики выходной мощности усилителя не являются абсолютными. При определенных условиях эксплуатации — например, когда регулятор громкости установлен слишком высоко, или когда входной сигнал слишком велик, или в течение более коротких периодов времени — усилитель может превышать заявленный выход.Выходная мощность усилителя рассчитывается с учетом заданного уровня общих гармонических искажений (THD). Если требуется увеличить мощность, усилитель попытается сделать это, но со значительно более высокими уровнями искажений. Между тем фактом, что усилитель пытается производить большую выходную мощность, и тем фактом, что люди воспринимают искажения как более высокую выходную мощность, для некоторых пользователей может быть естественно делать это время от времени — это звучит громче.

    Например (с использованием круглых чисел) усилитель мощностью 100 Вт при не более 0.5% THD может быть увеличен для получения 200 Вт выходной мощности для громкоговорителей. В тех же самых неблагоприятных условиях усилитель мощностью 200 Вт может выдать на громкоговорители 400 Вт; Усилитель на 300 Вт может выдавать 600 Вт, а усилитель на 600 Вт может быть перегружен до 1200 Вт.

    Важно знать, что большая часть этой дополнительной мощности происходит от перегрузки усилителя в области высоких частот, как мы скоро увидим.

    Искажения обычно влияют на высокочастотные драйверы
    Дополнительная мощность, генерируемая перегрузкой усилителя, богата гармониками (искажениями).В пассивном (без источника питания) полнодиапазонном динамике эти гармоники направляются кроссоверной сетью на высокочастотный драйвер. Гармоники — это более высокие частоты, кратные исходному сигналу. Следовательно, высокочастотный компонент акустической системы должен нести основную тяжесть искажений — даже если исходный сигнал может быть на более низкой частоте.

    Вот как выглядит сигнал
    Когда рассматривается тестовый сигнал синусоидальной волны (сигнал, состоящий из основной частоты без обертонов и гармоник), его верхний и нижний крайние значения будут иметь нормально закругленные контуры.Средняя выходная мощность составляет половину максимальной выходной мощности.

    Типичная синусоида. Средний выходной сигнал синусоидальной волны составляет половину пикового выходного сигнала.

    Частотная характеристика 500 Гц Синусоида показывает контент только при 500 Гц. Это не повредит динамик, если не будет слишком большой мощности для низкочастотного (или среднечастотного) динамика.

    Но когда усилитель перегружен, контуры волны «обрезаются», образуя почти прямоугольную волну с плоскими участками на верхнем и нижнем пределе.

    Средняя мощность приближается к пиковой. Когда это происходит, может быть выдана мощность, вдвое превышающая номинальную мощность усилителя, и большая часть этой дополнительной мощности приходится на гармонические искажения, которые направляются кроссоверной сетью громкоговорителя на высокочастотный драйвер (ы), которые могут быть не в состоянии справиться с аномально высокий уровень мощности.

    При ограниченном синусоидальном сигнале средний выходной сигнал приближается к пиковому выходному сигналу.

    Частотная характеристика сильно обрезанной синусоидальной волны 500 Гц показывает, что основная составляющая 500 Гц выше, плюс есть дополнительная составляющая высокочастотных гармоник, которая может легко превысить номинальную мощность высокочастотного драйвера.

    При переходе на использование усилителя большей мощности требуемые уровни мощности могут быть получены без ограничения, что позволяет акустической системе принимать чистый программный материал, содержащий нормальное распределение уровней энергии. В таких условиях повреждение высокочастотного динамика маловероятно. Кроме того, это будет звучать намного лучше.

    Что может сделать пользователь?

    • Согласование усилителя с громкоговорителем (ами) Купите усилитель, который будет обеспечивать большую мощность, чем вам нужно, и никогда не запускайте усилитель с ограничениями.Помните, что громкоговоритель может потребовать в десять раз больше среднего уровня мощности для тех мгновенных всплесков звуковой мощности, известных как переходные процессы, поэтому важно наличие усилителя, способного чисто управлять кратковременными пиками — без искажений. Если у усилителя достаточно резервной мощности, переходные процессы будут четкими и четкими. В противном случае переходные процессы будут мутными или унылыми. Когда в усилителе заканчивается неискаженная мощность, он вынужден превышать свои проектные возможности, создавая опасные уровни мощности, богатые высокочастотными искажениями. Согласно общему практическому правилу, когда это возможно, идеальной ситуацией является использование усилителя, который рассчитан на удвоение средней мощности розового шума за 2 часа громкоговорителя . Это позволит вам получить от громкоговорителя весь уровень звука, который он способен воспроизводить.
    • Почему двойной? Рекомендация «удвоить номинальную мощность динамика» связана с тем фактом, что громкоговорители и усилители испытываются, измеряются и оцениваются по-разному.Громкоговорители тестируются с сигналом — розовым шумом с пиками 6 дБ (т.е. «пик-фактор» 6 дБ), где пики в 4 раза (+6 дБ выше) превышают среднюю мощность сигнала. Усилители, напротив, тестируются с сигналом — синусоидальной волной — пики которого только в два раза (+3 дБ) превышают среднюю мощность сигнала. Таким образом, чтобы чисто управлять пиками, на которые тестируются динамики, усилитель должен иметь удвоенную (+ 3 дБ) номинальную мощность динамика. +3 дБ от удвоения номинальной мощности усилителя прибавляется к пику на +3 дБ выше его номинальной мощности, так что это соответствует + 6 дБ (выше номинальной средней мощности розового шума), которую может выдавать громкоговоритель.Тогда усилитель сможет чисто управлять пиками, которые может воспроизводить громкоговоритель. Никакого ограничения усилителя не требуется, чтобы пики чисто передавались в громкоговоритель.
    • Какую номинальную мощность использовать? В большинстве листов спецификаций громкоговорителей указано несколько значений номинальной мощности. Стандартные измерения громкоговорителей обычно основаны на сигнале розового шума с пик-фактором 6 дБ (отношение пикового к среднему), а цифры указаны для средней мощности непрерывного розового шума, мощности программы и пиковой мощности; с рейтингом продолжительностью 100 или 2 часа; рассчитаны на соответствие спектру и стандартам IEC, EIA или AES.Какой из них следует использовать? Для целей данной статьи используйте показатель средней мощности непрерывного розового шума (который основан на среднеквадратичном напряжении управляющего сигнала). Используйте значение 2-часовой продолжительности , если это указано в спецификации (если 2-часовое значение не указано, см. Ниже). И лучше всего использовать рейтинг IEC для полнодиапазонного динамика или рейтинг AES или IEC (в зависимости от того, что предоставляется) для акустической системы с несколькими усилителями (с двумя или тремя усилителями).

      Что касается продолжительности, если в спецификации указан только показатель мощности для 100-часового периода, вы обычно можете сделать консервативную оценку 2-часового показателя мощности, добавив 25% к 100-часовому значению.Так, например, динамик со средней номинальной мощностью непрерывного розового шума в течение 100 часов в 240 Вт может быть оценен как средний номинальный уровень непрерывного розового шума в течение 2 часов в 300 Вт, поэтому для него потребуется усилитель на 600 Вт.
    • Исключение 1: критическое прослушивание — Для критических ситуаций прослушивания, например, в студийной среде, может быть рекомендовано , четыре раза выше рейтинга динамика, чтобы поддерживать пиковые переходные характеристики.
    • Исключение 2: Если вам не нужно все это SPL — Рекомендация по удвоенной мощности для усилителя основана на предположении, что вы хотите получить от динамика столько выхода, сколько он способен выдать.Но если вы не хотите или не нуждаетесь в таком высоком уровне звука (максимальное звуковое давление), вы действительно можете использовать усилитель меньшего размера. Но опять же, вам нужно убедиться, что вы не собираетесь ограничивать усилитель мощности (что, опять же, создает прямоугольные искажения). Если вам нужно, чтобы система была на 3 дБ ниже ее максимальной мощности, вы можете уменьшить размер усилителя вдвое (согласование, а не превышение средней номинальной мощности розового шума динамика). Если вам не нужно, чтобы система была громче, чем на 6 дБ ниже ее максимальной мощности, вы можете снова уменьшить ее вдвое, до четверти рекомендуемого размера.И так далее. Каждый раз, когда вы уменьшаете размер усилителя мощности вдвое, вы понижаете максимальный уровень звукового давления системы еще на 3 дБ. Опять же, просто убедитесь, что вы не используете усилитель, который слишком мал для необходимого уровня звука, потому что запуск усилителя мощности в режим ограничения мощности для получения большего выходного сигнала приводит к искажениям, которые могут подавить ВЧ драйвер (ы), даже если усилитель маленький. Лучше склоняться к тому, чтобы усилитель был слишком большим, а не слишком маленьким.

    • Использование защитного ограничителя — Многие усилители имеют встроенный DSP или ограничитель.Используйте его, но помните о некоторых предостережениях.
      • Трудно установить ограничитель DSP-устройства — Если ограничитель расположен внутри устройства DSP, которое находится перед усилителем в цепи сигнала, трудно правильно откалибровать ограничитель просто потому, что усилитель обеспечивает дополнительный — и часто изменяемый ( через регулятор громкости усилителя) — каскад усиления, который находится между ограничителем и громкоговорителем. Даже небольшая регулировка громкости усилителя может нарушить калибровку.По этой причине лучше всего использовать ограничитель, который находится внутри самого усилителя. Ограничители на основе усилителя «знают», сколько мощности исходит от усилителя в любой момент времени. В этом случае ограничитель обычно устанавливается на основе либо дБ ниже полной выходной мощности усилителя, либо напряжения выходного сигнала (которое может быть установлено на максимальное напряжение, указанное в спецификации громкоговорителя).
      • Понимание недостатков защитных ограничителей — К сожалению, даже когда ограничители настроены идеально, мы не можем полагаться на какой-либо ограничитель в плане защиты от ошибок.Вот несколько примеров:
        • Если на полнодиапазонном (пассивно перекрещенном) громкоговорителе установлен лимитер, и есть высокочастотный визг обратной связи (или даже длинная высокочастотная нота гитары), общая мощность, подаваемая на громкоговоритель, может быть невысокой. достаточно, чтобы задействовать ограничитель, но вся мощность будет отдана высокочастотному драйверу, который сам по себе не способен обрабатывать такое количество мощности. Или, если что-то обрезается раньше в потоке сигнала, эти прямоугольные волны от ограничения в основном состоят из высокочастотных гармоник, которые снова идут прямо к высокочастотному драйверу и могут его взорвать, даже если общая мощность на динамик не может быть выше порога ограничителя.Фактически, это может произойти, если есть что-то вроде синтезатора, который намеренно посылает прямоугольные волны в качестве звука.
        • Если ограничитель в первую очередь основан на ограничении пиков, а не на снижении среднеквадратичной / средней мощности, чем больше он задействуется, тем меньше будет отношение пиковой мощности к средней. Это означает, что в то время как пики ограничиваются, средняя мощность, поступающая на динамик, становится все выше и выше. Это может привести к перегрузке динамика.
        • Некоторые лимитеры имеют довольно небольшой диапазон подавления сигнала.Например, некоторые уменьшат громкость только на 10 или 15 дБ максимум, а затем уже не смогут уменьшить громкость. Для этих ограничителей вы можете просто подавить их.
        • Некоторые ограничители приводят к появлению прямоугольных волн после достижения диапазона уменьшения сигнала. А плохо спроектированные лимитеры могут привести к прямоугольным волнам во время лимитирования.
        • Суть в том, что ограничители обычно помогают защитить динамик от повреждений в результате кратковременного перегрузки, но нельзя полностью полагаться на них, чтобы уберечь динамик от проблем, и использование ограничителя не означает, что динамик защищен от такого рода перегрузок. повреждение, которое может произойти из-за чрезмерного увеличения мощности усилителя мощности.
    • Распределенные системы 70 В и 100 В — Хотя трансформатор в распределенном громкоговорителе ограничивает напряжение, которое проходит к драйверам, любое ограничение усилителя 70 В или 100 В — или любого другого сильного высокочастотного сигнала — все равно проходит через трансформатор и получает водителям. Звучит плохо и также может вызвать стресс у водителей.
    • Использование активного динамика — Благодаря хорошо спроектированному активному динамику усилитель уже рассчитан на правильную работу с драйверами.Для активных динамиков, которые содержат отдельные усилители мощности для каждой полосы частот (или каждого драйвера), они часто также содержат многополосный ограничитель, который помогает защитить каждый из драйверов.

    Резюме
    Мы не говорим, что любое ограничение мощности усилителя взорвет ваш динамик. Но для пассивных динамиков (без источника питания), если небольшой усилитель должен быть сильно перегружен, чтобы получить желаемый уровень громкости в пространстве для прослушивания, таким образом генерируя высокие уровни мощности и искажений, пользователю лучше посоветовать приобрести усилитель большего размера, способный производя требуемую мощность с незначительными искажениями.В любом случае идеальная ситуация состоит в том, что следует выбирать усилитель с номинальной выходной мощностью, превышающей максимальную используемую мощность — общая рекомендация заключается в том, что усилитель должен обеспечивать мощность, вдвое превышающую номинальную мощность громкоговорителя. . Этот запас резервной мощности гарантирует, что усилитель не будет пытаться выдавать больше мощности, чем позволяет его конструкция. Конечным результатом будет воспроизведение звука без искажений и более длительный срок службы громкоговорителей.

    Допуски по напряжению и схемы защиты

    В завершение серии обучающих статей о технических характеристиках усилителей мы поговорим об ограничениях рабочего напряжения и, соответственно, схемах защиты, встроенных в автомобильный аудиоусилитель.В старые добрые времена электрических систем, которые состояли из генератора переменного тока, батареи, переключателей и пары реле, подавать относительно постоянное напряжение на автомобильный аудиоусилитель было легко. Новые технологии и ограничения на аккумулятор, генератор и размер проводов значительно усложнили поддержание качества наших усилителей.

    Автомобильные системы Start-Stop вызывают низкое рабочее напряжение

    В условиях бесконечной борьбы за то, чтобы максимально снизить топливную экономичность транспортных средств, которые мы ведем, автопроизводители прибегли к системам, которые отключают двигатель для экономии топлива на холостом ходу.Переход из стандартного режима ожидания в состояние выключения не представляет проблемы для большинства усилителей, поскольку напряжение батареи падает только до диапазона от 12,2 до 11,5 вольт. Если напряжение начинает падать из-за того, что автомобиль слишком долго работал на холостом ходу, двигатель автоматически перезапустится.

    Проблемой для современных автомобильных аудиоусилителей являются провалы напряжения, связанные с запуском двигателя. В обычных автомобилях стереосистема выключена, когда вы заводите двигатель. Эти системы старт-стоп позволяют всему работать и работать при перезапуске двигателя.Напряжение в электрической системе может упасть ниже семи вольт во время запуска двигателя. Многие усилители отключаются при падении ниже девяти или десяти вольт, и ваша музыка перестает воспроизводиться. Хотя пауза в музыке не является проблемой, она может раздражать, если вы застряли в пробке.

    Новые конструкции усилителей включают схему, которая будет поддерживать работу усилителя в кратковременных условиях низкого рабочего напряжения. Некоторые компании указывают, что их усилители способны выдерживать напряжение всего 6 вольт в течение 5 секунд, чтобы ваша музыка воспроизводилась без перебоев.Такая же конструкция соответствия старт-стопу требуется для цифровых сигнальных процессоров, чтобы предотвратить их отключение во время перезапуска двигателя.

    Схема защиты автомобильного аудиоусилителя

    Три десятилетия назад, если вы закоротили выходы усилителя, он взорвался бы, иногда с впечатляющими результатами. Современные усилители включают схемы защиты, которые контролируют различные функции и автоматически отключают усилитель при возникновении нежелательной ситуации. Большинство усилителей включают защиту от перегрева или короткого замыкания на проводах динамиков.Лучшие усилители могут выдавать предупреждение, если возникает состояние перенапряжения в цепи питания, которое может повредить компоненты внутри усилителя.

    Несколько избранных производителей предоставляют компьютеризированный мониторинг различных частей своих усилителей и кодов ошибок флэш-памяти, чтобы пользователи знали, почему усилитель находится под защитой. Предусмотрены короткие замыкания, перенапряжение, пониженное напряжение, перегрев источника питания и выходного каскада, а также уведомление о повторных коротких замыканиях. Эта информация позволяет техническому специалисту гораздо проще и эффективнее устранять неполадки, связанные с установкой или громкоговорителями.

    Как автомобильные аудиоусилители справляются с перегревом

    Есть два способа защиты усилителя от перегрева. Чаще всего усилитель прекращает воспроизведение музыки, чтобы устройства переключения источника питания и выхода могли остыть. Второй вариант заключается в том, что усилитель снижает выходной сигнал, чтобы выделять меньше тепла. Хотя это хорошо, что ваша музыка не перестает воспроизводиться, большинство потребителей стараются увеличить громкость, когда музыка становится тише.В конце концов усилители, которые откатывают питание, перейдут в состояние полной защиты и отключатся для защиты компонентов.

    Если вы живете в районе, где летом становится жарко, хорошей идеей будет выбор усилителя с адекватным охлаждением за счет большого радиатора или вентилятора.

    Оставить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *