Схемы блоков питания своими руками: Блок питания своими руками

Содержание

Сборка блока питания с регулировкой тока/напряжения своими руками

Вот очередная версия лабораторного блока питания с напряжением от 0 до 30 В и регулировкой потребляемого тока 0-2 А, что всегда бывает полезно, когда используется БП для настройки самодельных схем или когда они неизвестные приборы запускаются в первый раз.

Схема ИП с регулировкой тока и напряжения

Сама схема питания — это популярный комплект из таких элементов:

  1. Сам регулируемый стабилизатор, в котором заменен T1 — BC337 на BD139, T2 — BD243 на BD911
  2. D1-D4 — диоды 1N4001 заменены на RL-207
  3. C1 — 1000 мкФ / 40 В заменен на 4700 мкФ / 50 В
  4. D6, D7 — 1N4148 на 1N4001

У используемого трансформатора есть напряжения: 25 В, 2 А и 12 В, которое полезно для управления вентилятором, охлаждающим радиатор и силовые диоды на панели. Для этого была создана небольшая плата с мостовым выпрямителем, фильтрующими конденсаторами и стабилизатором LM7812 (с радиатором).

Внутри корпуса лабораторного источника питания размещены трансформатор, плата самого регулируемого блока питания, платы стабилизаторов — 12 В и 24 В, радиатор с охлаждающим вентилятором (запускается при 50 С).

На передней части корпуса установлены выключатель, три светодиода, информирующих о состоянии блока питания (сеть 220 В, включение вентилятора и защита — ограничение тока или короткое замыкание), синие и красные LED дисплеи с наклеенной на них затемняющей пленкой. Рядом с дисплеями расположены регулирующие потенциометры, а справа выводы питания. На задней части корпуса имеется разъем для сети, предохранитель и охлаждающий вентилятор 60×60 мм.

Что касается индикаторных дисплеев, они показывают:

  • синий — текущее напряжение в вольтах V
  • красный — текущий ток в амперах A

Источник питания получился реально удобный и надёжный. Вся сборка заняла несколько дней. Что касается охлаждения, оно включается только при высокой нагрузке и то на короткое время, примерно на пару минут.

С этим БП удобно работать даже при слабом освещении, так как яркости индикаторов хватает с головой. Если хотите повысить ток до 3-4 ампера, выбирайте трансформатор по-мощнее и транзисторы регулятора, с хорошим запасам по току. Ещё пару неплохих схем источников питания смотрите по ссылкам:

Блок питания своими руками.

Собираем регулируемый блок питания

Те новички, которые только начинают изучение электроники спешат соорудить нечто сверхъестественное, вроде микрожучков для прослушки, лазерный резак из DVD-привода и так далее… и тому подобное… А что насчёт того, чтобы собрать блок питания с регулируемым выходным напряжением? Такой блок питания – это крайне необходимая вещь в мастерской каждого любителя электроники.

С чего же начать сборку блока питания?

Во-первых, необходимо определиться с требуемыми характеристиками, которым будет удовлетворять будущий блок питания.

Основные параметры блока питания – это максимальный ток (Imax), который он может отдать нагрузке (питаемому устройству) и выходное напряжение (Uout), которое будет на выходе блока питания. Также стоит определиться с тем, какой блок питания нам нужен: регулируемый или нерегулируемый.

Регулируемый блок питания – это блок питания, выходное напряжение которого можно менять, например, в пределах от 3 до 12 вольт. Если нам надо 5 вольт — повернули ручку регулятора – получили 5 вольт на выходе, надо 3 вольта – опять повернул – получил на выходе 3 вольта.

Нерегулируемый блок питания – это блок питания с фиксированным выходным напряжением – его менять нельзя. Так, например, многим известный и широко распространённый блок питания «Электроника» Д2-27 является нерегулируемым и имеет на выходе 12 вольт напряжения. Также нерегулируемыми блоками питания являются всевозможные зарядники для сотовых телефонов, адаптеры модемов и роутеров. Все они, как правило, рассчитаны на какое-то одно выходное напряжение: 5, 9, 10 или 12 вольт.

Понятно, что для начинающего радиолюбителя наибольший интерес представляет именно регулируемый блок питания. Им можно запитать огромное количество как самодельных, так и промышленных устройств, рассчитанных на разное напряжение питания.

Далее нужно определиться со схемой блока питания. Схема должна быть простая, легка для повторения начинающими радиолюбителями. Тут лучше остановиться на схеме с обычным силовым трансформатором. Почему? Потому что найти подходящий трансформатор достаточно легко как на радиорынках, так и в старой бытовой электронике. Делать импульсный блок питания сложнее. Для импульсного блока питания необходимо изготавливать достаточно много моточных деталей, таких как высокочастотный трансформатор, дроссели фильтров и пр. Также импульсные блоки питания содержат больше радиоэлектронных компонентов, чем обычные блоки питания с силовым трансформатором.

Итак, предлагаемая к повторению схема регулируемого блока питания приведена на картинке (нажмите для увеличения).

Параметры блока питания:

  • Выходное напряжение (Uout) – от 3,3…9 В;

  • Максимальный ток нагрузки (Imax) – 0,5 A;

  • Максимальная амплитуда пульсаций выходного напряжения – 30 мВ.;

  • Защита от перегрузки по току;

  • Защита от появления на выходе повышенного напряжения;

  • Высокий КПД.

Возможна доработка блока питания с целью увеличения выходного напряжения.

Принципиальная схема блока питания состоит из трёх частей: трансформатора, выпрямителя и стабилизатора.

Трансформатор. Трансформатор Т1 понижает переменное сетевое напряжение (220-250 вольт), которое поступает на первичную обмотку трансформатора (I), до напряжения 12-20 вольт, которое снимается со вторичной обмотки трансформатора (II). Также, по «совместительству», трансформатор служит гальванической развязкой между электросетью и питаемым устройством. Это очень важная функция.

Если вдруг трансформатор выйдет из строя по какой-либо причине (скачок напряжения и пр.), то напряжение сети не сможет попасть на вторичную обмотку и, следовательно, на питаемое устройство. Как известно, первичная и вторичная обмотки трансформатора надёжно изолированы друг от друга. Это обстоятельство снижает риск поражения электрическим током.

Выпрямитель. Со вторичной обмотки силового трансформатора Т1 пониженное переменное напряжение 12-20 вольт поступает на выпрямитель. Это уже классика. Выпрямитель состоит из диодного моста VD1, который выпрямляет переменное напряжение с вторичной обмотки трансформатора (II). Для сглаживания пульсаций напряжения после выпрямительного моста стоит электролитический конденсатор C3 ёмкостью 2200 микрофарад.

Регулируемый импульсный стабилизатор.

Схема импульсного стабилизатора собрана на достаточно известной и доступной микросхеме DC/DC преобразователя – MC34063.

Чтобы было понятно. Микросхема MC34063 является специализированным ШИМ-контроллером, разработанным для импульсных DC/DC преобразователей. Эта микросхема является ядром регулируемого импульсного стабилизатора, который используется в данном блоке питания.

Микросхема MC34063 снабжена узлом защиты от перегрузки и короткого замыкания в цепи нагрузки. Выходной транзистор, встроенный в микросхему, способен отдать в нагрузку до 1,5 ампер тока. На базе специализированной микросхемы MC34063 можно собрать как повышающие (

Step-Up), так и понижающие (Step-Down) DC/DC преобразователи. Так же возможно построение регулируемых импульсных стабилизаторов.

Особенности импульсных стабилизаторов.

К слову сказать, импульсные стабилизаторы обладают более высоким КПД по сравнению со стабилизаторами на микросхемах серии КР142ЕН (КРЕНки), LM78xx, LM317 и др. И хотя блоки питания на базе этих микросхем очень просты для сборки, но они менее экономичны и требуют установки охлаждающего радиатора.

Микросхема MC34063 не нуждается в охлаждающем радиаторе. Стоит заметить, что данную микросхему можно довольно часто встретить в устройствах, которые работают автономно или же используют резервное питание.

Использование импульсного стабилизатора увеличивает КПД устройства, а, следовательно, уменьшает энергопотребление от аккумулятора или батареи питания. За счёт этого увеличивается автономное время работы устройства от резервного источника питания.

Думаю, теперь понятно, чем хорош импульсный стабилизатор.

Детали и электронные компоненты.

Теперь немного о деталях, которые потребуются для сборки блока питания.

Трансформатор. В качестве трансформатора подойдёт любой сетевой понижающий трансформатор мощностью 8-10 ватт. Его первичная обмотка (I) должна быть рассчитана на переменное напряжение 220-250 вольт, а вторичная (II) на 12-20 вольт.

Где найти такой трансформатор?

Найти подходящий трансформатор можно в старой, неисправной и морально устаревшей аппаратуре: кассетных магнитофонах, стационарных CD-проигрывателях, игровых приставках и пр. Например, подойдут трансформаторы от старых лампово-полупроводниковых телевизоров советского производства ТВК-110ЛМ, ТВК-110Л2 и ТВК-70. Можно приобрести трансформатор серии ТП114, например ТП114-163М. При подборе силового трансформатора не лишним будет иметь представление о том, как узнать мощность трансформатора.


Силовые трансформаторы ТС-10-3М1 и ТП114-163М

Также подойдёт трансформатор ТС-10-3М1 с выходным напряжением около 15 вольт. В магазинах радиодеталей и на радиорынках можно найти подходящий трансформатор, главное, чтобы он соответствовал указанным параметрам.

Микросхема MC34063. Микросхема MC34063 выпускается в корпусах DIP-8 (PDIP-8) для обычного монтажа в отверстия и в корпусе SO-8 (SOIC-8) для поверхностного монтажа. Естественно, в корпусе SOIC-8 микросхема обладает меньшими размерами, а расстояние между выводами составляет около 1,27 мм. Поэтому изготовить печатную плату для микросхемы в корпусе SOIC-8 сложнее, особенно тем, кто только недавно начал осваивать технологию изготовления печатных плат. Следовательно, лучше взять микросхему MC34063 в DIP-корпусе, которая больше по размерам, а расстояние между выводами у такого корпуса – 2,5 мм. Сделать печатную плату под корпус DIP-8 будет легче.

Диодный мост. Диодный мост для блока питания можно изготовить из 4 отдельных диодов 1N4001-1N4007. Также вместо диодов 1N4001-1N4007 можно применить диоды 1N5819. При этом экономичность блока питания повыситься, поскольку диоды серии 1N58xx – это диоды Шоттки и у них меньшее падение напряжения на p-n переходе, чем у обычных диодов серии 1N400x.

Также в блок питания можно установить диодную сборку выпрямительного моста. Сборка занимает на печатной плате меньше места. Для установки в схему подойдут сборки на ток 1 ампер и выше. Для надёжности можно воткнуть в плату сборку и на 2 ампера – хуже не будет.

Где найти сборку диодного моста? В бэушных платах от любой электроники, которая питается от сети 220 вольт. Даже в компактных люминесцентных лампах – КЛЛ – есть диодный мост. Можно выковырять оттуда. Правда что попадётся, 4 отдельных диода или сборка диодного моста можно только гадать – тут как повезёт.

Если быть более конкретным, то подойдут диодные мосты (сборки): DB101-107, RB151-157, D3SBA10, 2W10M, DB207, RS207 и другие аналогичные и более мощные. Можно с лёгкостью применить диодный мост из неисправного компьютерного блока питания. Они мощные и здоровые, рассчитаны на довольно большой ток – хватить за глаза. Не забудьте проверить его на исправность!

Конденсаторы C1, C2, C4, C5 служат для подавления импульсных помех, которые поступают из электросети. Кроме этого они блокируют импульсные помехи, которые могут поступить в электросеть от самого импульсного стабилизатора.

Элементы защиты. В схеме применено два предохранителя. Предохранитель FU2 представляет собой обычный плавкий предохранитель на ток срабатывания 0,16 А (160 мА). Он включен последовательно с первичной обмоткой (I) трансформатора T1. FU1 – самовосстанавливающийся предохранитель. Когда ток через него становиться больше 0,5 ампер, то его сопротивление резко увеличивается, а ток в цепи выпрямителя и стабилизатора резко падает.


Самовосстанавливающийся предохранитель FRX050-90F

Так реализована защита в случае неисправности преобразователя. Стабилитрон VD3 также служит защитным и работает в паре с самовосстанавливающимся предохранителем FU1. Основная его цель – защитить нагрузку (питаемое устройство) от повреждения высоким напряжением. Напряжение стабилизации стабилитрона составляет 11 вольт. В случае неисправности преобразователя и появления на выходе напряжения более 11 вольт, ток через стабилитрон резко возрастает. Возросший ток в цепи приводит к срабатыванию предохранителя FU1, который ограничивает ток. Поэтому защитный стабилитрон VD3 необходимо установить в схему обязательно. В случае если не удастся найти подходящий самовосстанавливающийся предохранитель, то его можно заменить обычным плавким на ток срабатывания 0,5 ампер.

Список деталей, которые потребуются для сборки блока питания.

Название

Обозначение

Номинал/Параметры

Марка или тип элемента

Микросхема DA1   MC34063
Диодный мост VDS1 (VD1-VD4) 1-2 ампер, 600 вольт D3SBA10, RS207, DB107 и аналоги

Электролитические конденсаторы

C8, C9, C12 330 мкФ * 16 вольт К50-35 или аналоги
C3 2200 мкФ * 35 вольт
Конденсаторы C1, C2, C4, C5, C10, C11, C13 0,22 мкФ КМ-5, К10-17 и аналогичные
C6 0,1 мкФ
C7 470 пФ
Резисторы R1 0,2 Ом (1 Вт) МЛТ, МОН, С1-4, С2-23, С1-14 и аналогичные
R3 560 Ом (0,125 Вт)
R4 3,6 кОм (0,125 Вт)
R5 8,2 кОм (0,125 Вт)
Резистор переменный R2 1,5 кОм СП3-9, СП4-1, ППБ-1А и аналогичные
Диод Шоттки VD2   1N5819
Стабилитрон VD3 11 вольт 1N5348
Дроссель L1, L2 300 мкГн  
Дроссель L3   самодельный
Предохранитель плавкий FU2 0,16 ампер  
Самовосстанавливающийся предохранитель FU1 0,5 ампер (на напряжение >30-40 вольт) MF-R050; LP60-050; FRX050-60F; FRX050-90F
Светодиод индикаторный HL1 любой 3 вольтовый  

Дроссели. Дроссели L1 и L2 можно изготовить самостоятельно. Для этого потребуется два кольцевых магнитопровода из феррита 2000HM типоразмера К17,5 х 8,2 х 5 мм. Типоразмер расшифровывается так: 17,5 мм. – внешний диаметр кольца; 8,2 мм. — внутренний диаметр; а 5 мм. – высота кольцевого магнитопровода. Для намотки дросселя понадобиться провод ПЭВ-2 сечением 0,56 мм. На каждое кольцо необходимо намотать 40 витков такого провода. Витки провода следует распределять по ферритовому кольцу равномерно. Перед намоткой, ферритовые кольца нужно обмотать лакотканью. Если лакоткани нет под рукой, то обмотать кольцо можно скотчем в три слоя. Стоит помнить, что ферритовые кольца могут быть уже покрашены – покрыты слоем краски. В таком случае обматывать кольца лакотканью не надо.

Кроме самодельных дросселей можно применить и готовые. В этом случае процесс сборки блока питания ускориться. Например, в качестве дросселей L1, L2 можно применить вот такие индуктивности для поверхностного монтажа (SMD — дроссель).


SMD-дроссель

Как видим, на верхней части их корпуса указано значение индуктивности – 331, что расшифровывается как 330 микрогенри (330 мкГн). Также в качестве L1, L2 подойдут готовые дроссели с радиальными выводами для обычного монтажа в отверстия. Выглядят они вот так.


Дроссель с радиальными выводами

Величина индуктивности на них маркируется либо цветовым кодом, либо числовым. Для блока питания подойдут индуктивности с маркировкой 331 (т.е. 330 мкГн). С учётом допуска ±20%, который разрешён для элементов бытовой электроаппаратуры, также подойдут дроссели с индуктивностью 264 — 396 мкГн. Любой дроссель или катушка индуктивности рассчитана на определённый постоянный ток. Как правило, его максимальное значение (IDC max) указывается в даташите на сам дроссель. Но на самом корпусе это значение не указывается. В таком случае можно ориентировочно определить значение максимально допустимого тока через дроссель по сечению провода, которым он намотан. Как уже говорилось, для самостоятельного изготовления дросселей L1, L2 необходим провод сечением 0,56 мм.

Дроссель L3 самодельный. Для его изготовления необходим магнитопровод из феррита 400HH или 600HH диаметром 10 мм. Найти такой можно в старинных радиоприёмниках. Там он используется в качестве магнитной антенны. От магнитопровода нужно отломать кусок длиной 11 мм. Сделать это достаточно легко, феррит легко ломается. Можно просто плотно зажать необходимый отрезок пассатижами и отломить излишки магнитопровода. Также можно зажать магнитопровод в тисках, а потом резко ударить по магнитопроводу. Если с первого раза аккуратно разломить магнитопровод не получиться, то можно повторить операцию.

Затем получившийся кусок магнитопровода нужно обмотать слоем бумажного скотча или лакоткани. Далее наматываем на магнитопровод 6 витков сложенного вдвое провода ПЭВ-2 сечением 0,56 мм. Для того чтобы провод не размотался, обматываем его сверху скотчем. Те выводы проводов, с которых начиналась намотка дросселя, в последующем впаиваем в схему в том месте, где показаны точки на изображении L3. Эти точки указывают на начало намотки катушек проводом.

Дополнения.

В зависимости от нужд можно внести в конструкцию те или иные изменения.

Например, вместо стабилитрона VD3 типа 1N5348 (напряжение стабилизации – 11 вольт) в схему можно установить защитный диод – супрессор 1,5KE10CA.

Супрессор – это мощный защитный диод, по своим функциям схож со стабилитроном, однако, основная его роль в электронных схемах – защитная. Назначение супрессора – это подавление высоковольтных импульсных помех. Супрессор обладает высоким быстродействием и способен гасить мощные импульсы.

В отличие от стабилитрона 1N5348, супрессор 1.5KE10CA обладает высокой скоростью срабатывания, что, несомненно, скажется на быстродействии защиты.

В технической литературе и в среде общения радиолюбителей супрессор могут называть по-разному: защитный диод, ограничительный стабилитрон, TVS-диод, ограничитель напряжения, ограничительный диод. Супрессоры можно частенько встретить в импульсных блоках питания – там они служат защитой от перенапряжения питаемой схемы при неисправностях импульсного блока питания.

О назначении и параметрах защитных диодов можно узнать из статьи про супрессор.

Супрессор 1,5KE10CA имеет букву С в названии и является двунаправленным – полярность установки его в схему не имеет значения.

Если есть необходимость в блоке питания с фиксированным выходным напряжением, то переменный резистор R2 не устанавливают, а заменяют его проволочной перемычкой. Нужное выходное напряжение подбирают с помощью постоянного резистора R3. Его сопротивление рассчитывают по формуле:

Uвых = 1,25 * (1+R4/R3)

После преобразований получается формула, более удобная для расчётов:

R3 = (1,25 * R4)/(Uвых – 1,25)

Если использовать данную формулу, то для Uвых = 12 вольт потребуется резистор R3 с сопротивлением около 0,42 кОм (420 Ом). При расчётах, значение R4 берётся в килоомах (3,6 кОм). Результат для резистора R3 также получаем в килоомах.

Для более точной установки выходного напряжения Uвых вместо R2 можно установить подстроечный резистор и выставить по вольтметру требуемое напряжение более точно.

При этом следует учесть, что стабилитрон или супрессор стоит устанавливать с напряжением стабилизации на 1…2 вольта больше, чем расчётное напряжение на выходе (Uвых) блока питания. Так, для блока питания с максимальным выходным напряжением равным, например, 5 вольт следует установить супрессор 1,5KE6V8CA или аналогичный ему.

Изготовление печатной платы.

Печатную плату для блока питания можно сделать разными способами. О двух методах изготовления печатных плат в домашних условиях уже рассказывалось на страницах сайта.

В общем, выбрать есть из чего.

Налаживание и проверка блока питания.

Чтобы проверить работоспособность блока питания его для начала нужно, конечно же, включить. Если искр, дыма и хлопков нет (такое вполне реально), то скорее БП работает. Первое время держитесь от него на некотором расстоянии. Если ошиблись при монтаже электролитических конденсаторов или поставили их на меньшее рабочее напряжение, то они могут «хлопнуть» — взорваться. Это сопровождается разбрызгиванием электролита во все стороны через защитный клапан на корпусе. Поэтому не торопитесь. Подробнее об электролитических конденсаторах можно почитать здесь. Не ленитесь это прочитать – пригодиться не раз.

Внимание! Во время работы силовой трансформатор находиться под высоким напряжением! Пальцы к нему не совать! Не забывайте о правилах техники безопасности. Если надо что-то изменить в схеме, то сначала полностью отключаем блок питания от электросети, а потом делаем. По-другому никак – будьте внимательны!

P.S.

Под занавес всего этого повествования хочу показать готовый блок питания, который был сделан своими руками.

Да, у него ещё нет корпуса, вольтметра и прочих «плюшек», которые облегчают работу с таким прибором. Но, несмотря на это, он работает и уже успел спалить офигенный трёхцветный мигающий светодиод из-за своего бестолкового хозяина, который любит безбашенно крутить регулятор напряжения . Желаю и вам, начинающие радиолюбители, собрать что-нибудь похожее!

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Лабораторный блок питания своими руками 0-30В 0-5А

Некоторым радиолюбителям необходимо иметь в своем арсенале лабораторный блок питания от нуля вольт, иногда это необходимо, а иногда это просто модно. Сегодня у нас статья посвящена именно такому блоку. Мы рассмотрим подробно пошаговую сборку этого ЛБП, а также в процессе сборки постараемся кратко раскрыть основные принципы работы ее узлов.

Лабораторный блок питания своими руками 0-30В 0-5А

Когда был изготовлен блок 1,3-30 В, именного тогда пришла идея немного модернизировать схему и расширить рабочее напряжение от 0 В. По сути, схема лабораторного блока питания дополнилась лишь небольшим количеством элементов.

Как видим, ничего нового, та же LM317 усиленная парой мощных транзисторов TIP36C, ограничение и стабилизация тока также организованно на LM301. Но присутствует стабилизатор 7905 и дополнительный делитель состоящий из R9 и Р4, который позволяет формировать отрицательные 1,2 В. В общем, читаем инструкцию по сборке и настройке блока.

Лабораторный блок питания — пошаговая сборка

Первым делом необходимо выбрать подходящий мощный трансформатор. Для нашего блока им станет ТПП-319. Перед сборкой необходимо как следует его нагрузить и проверить, как он держит нагрузку, и какой максимальный ток он способен выдать.

После подготовки и подключения трансформатора, а также диодного моста BR1, необходимо установить на его выход конденсатор С1 и приступать к плате.

Плату блока питания для самостоятельного изготовления можно скачать в конце статьи в формате lay.

Шаг. 1 Установка элементов, отвечающих за регулировку напряжения

Устанавливаем предохранитель F1. Резистор R1 временно заменяем перемычкой. Далее устанавливаем стабилизатор с регулируемым выходным напряжением LM317. Также на свои места устанавливаем R4 и R6 и подключаем переменный резистор Р3. На плате вместо Р4 устанавливаем временную перемычку на минус блока.

Сейчас мы подключаем основу блока – детали, отвечающие за регулировку напряжения. Выходное напряжение на стабилизаторе LM317 зависит от делителя напряжения, собранного на R6 и Р3.

На выходе мы получим регулируемое стабилизированное напряжение от 1,2 В. Максимальный ток, который сейчас может пропустить через себя LM317 это 1,5 А. Сейчас можно закрепить небольшой радиатор на LM317 и нагрузить выход БП нагрузкой. Важно на данном этапе не перегружать БП, выходной ток не должен превышать 0,5 А т.к. LM317 будет очень сильно нагреваться.

Шаг. 2 Установка конденсаторов фильтра

Устанавливаем конденсаторы С3; С4; С8С12. После установки С9 регулировка напряжение станет более плавной. По выходным характеристиками на данном этапе блок остается без изменений.

Шаг. 3 Подключение силовых транзисторов

Снимаем перемычку, установленную вместо резистора R1. Устанавливаем R1 на свое место. Подключаем транзисторы Т1-Т2 и балансировочные резисторы R7 — R8. Устанавливаем R5. R5 – выполняет роль шунта. В дальнейшем LM301 будет отслеживать падение напряжения на нем.

При небольшой нагрузке ток будет идти через LM317, а при увеличении нагрузки из-за падения напряжения на R1 (на 0,6-0,8 В)  откроются транзисторы. Транзисторы необходимо установить на хороший радиатор с принудительным охлаждением. На выходе будет регулировка напряжения от 1,2-30 В, но без ограничения тока. Важно! Пока не закончена сборка блока, не устраивать короткое замыкание на выходе БП.

Шаг. 4 Балансировка транзисторов

Работу пары транзисторов необходимо сбалансировать, для этого нагружаем блок. Выходной ток лучше не превышать 3 А. Измеряем ток, проходящий через транзистор Т1, затем через транзистор Т2. Амперметр поочередно подключаем в коллекторную цепь каждого из транзисторов. Если ток примерно одинаковый, переходим к шагу №5. Если перекос тока значительный, необходимо с помощью R7 и R8 добиться максимально близких значений. В качестве нагрузки лучше использовать нихромовую проволоку или спираль от ТЭНа.

Как показывает практика, если пара транзисторов из одной партии и новая, то скорей всего ток, проходящий через каждый транзистор, будет одинаковым.


Если транзисторы отказываются работать в паре, но работают в этой схеме нормально по отдельности — следует уменьшить R1 до 10 Ом


Шаг. 5 Подключение питания для ОУ и периферии

В следующем шаге мы поработаем над питанием LM301 и периферийных устройств. Для питания вентилятора и цифрового вольтамперметра используется стабилизатор 7812. Питание для него берется с основного моста BR1, а на выходе мы уже получим стабилизированное напряжение 12 В. Также на выходе 7812 устанавливается конденсатор С13. Стабилизатор 7812 желательно установить на небольшой радиатор.

Для формирования отрицательного питания LM301 используется отдельная обмотка трансформатора, которая подключается к диодному мосту BR2 и конденсатору С2 (положительный вывод конденсатора подключается на минус блока). Далее напряжение поступает на стабилизатор отрицательной полярности 7905. Важно учесть, что напряжение на входе стабилизатора должно быть порядка 7-9 В. На выходе 7905 устанавливается конденсатор С14.

После установки необходимо произвести замеры напряжения относительно минуса БП. Черный щуп мультиметра подключается на минус блока, а красный на выход стабилизатора 7905. Показания должны быть – 5 В (минус 5 вольт). На выходе 7812 должно быть 12 В.

Шаг. 6 Установка операционного усилителя и элементов стабилизации тока

Устанавливаем LM301, переменный и подстроечный резистор Р1 и Р2, конденсатор С5;С6;С7, резисторы R2; R3, а также диоды D1; D2 и светодиод LED1. Не забываем поставить перемычку на плате идущую от Р2 .

Пара слов о работе операционного усилителя в этом лабораторном блоке питания. LM301 в данном блоке работает в режиме компаратора. R5 – выполняет роль шунта, LM301 отслеживает на нем падение напряжения.

С помощью делителя, состоящего из резисторов Р1; Р2 и R3, устанавливается на инвертирующем входе опорное напряжение. Если напряжение на инвертирующем входе больше, чем на неинвертирующем на разницу, не превышающую опорное напряжение, на выходе LM301 будет напряжение равное напряжению питания LM301 (такое же, как и на выходе БП). Светодиод не загорится, так как включен обратной полярностью. Как только напряжение на инвертирующем входе превысит напряжение на неинвертирующем, на разницу значения опорного напряжения, то на свой выход ОУ подаст -5V и светодиод загорится. Напряжение отрицательной полярности проходит через LED1 и D1 попадает на управляющий вывод LM317. Вывод частотной коррекции LM301, включенный через диод D2 на выход блока питания, гасит напряжение на выходе ОУ до безопасного для светодиода LED1 уровня.



Таким образом, вращая потенциометр Р1, можно изменять опорное напряжение на инвертирующем входе и соответственно ограничивать ток, проходящий через R5.

На данном этапе о правильной работе LM301 можно судить, когда Р2 или Р1 будет установлен в крайнем минимальном положении, при этом загорится светодиод, а напряжение на выходе блока сбросится на ноль. На этом этапе лабораторный блок питания готов на 90%.

Шаг. 7 Установка нуля

Для регулировки напряжения LM317 он нуля вольт на таком лабораторном блоке питания, будем заимствовать идею, описанную производителем LM117. Тут для регулировки от нуля вольт используется опорное стабилизированное напряжение – 1,2 В (минус 1,2 В).

Как видим, в первоисточнике используется источник опорного напряжения LM113. Его можно заменить современным аналогом LMV431, который лучше согласован с LM317 и имеет опорное напряжение – 1,24 В (минус 1,24 В). Но, при использовании такого подхода возникнет проблема с покупкой LMV431, зачастую магазины везут ее только под заказ и не в самые короткие сроки.

С учетом того, что отрицательное питание LM301 в нашем блоке и так стабилизированное с помощью 7905, то нам достаточно установить делитель напряжения состоящий из R9 и Р4. А с помощью Р4 уже можно добиться значения — 1,25 В (минус 1,25 В) на делителе.

Снимаем временную перемычку, установленную вместо Р4. Устанавливаем R9 и Р4 на свои места. Переводим Р1 и Р2 в средние положения. Р4 устанавливаем в крайнее положение так, что бы его сопротивление было минимальным и включаем блок. С помощью Р3 мы устанавливаем минимальное выходное напряжение блока, оно будет 1,2 В. Далее, увеличивая сопротивление Р4, добиваемся значение 0 В на выходе блока. Теперь доступный диапазон регулировки напряжения составляет 0-30 В.

Шаг. 8 Установка защитных диодов

Устанавливаем диоды D3 и D4. D3 будет защищать вход блока от всплесков напряжений обратной полярности, т.к. эксплуатация лабораторного блока будет происходить в различных условиях. D4 защищает выход LM317 от ситуаций, когда напряжение на выходе LM317 превышает напряжение на ее входе.

Шаг. 9 Настройка ограничения максимального тока

  • Выставляем на блоке 12В.
  • Р2 устанавливаем на максимум (т.е. регулировка тока включена максимальная) — на выходе 12 В.
  • Р1 — на минимум (подстройка максимального тока) т.е. выходной ток будет ноль и напряжение упадет до 0 — горит светодиод.
  • Берем нихромовую спираль сопротивлением 2 Ом. и подключаем ее к выходу.
  • С помощью Р1 начинаем регулировать ток. Когда на выходе 5 А, можно остановиться. В это время вольтметр будет показывать 10 В.

Теперь с помощью Р2 будет доступный диапазон тока 0 — 5 А. Это самый простой метод, который можно рекомендовать для настройки максимального тока такого лабораторного блока питания.

Шаг. 10 Подключение вольтамперметра

При подключении вольтамперметра питание прибора стоит брать со стабилизатора 7812. Отрицательный выход блока на выходную приборную клемму подключается уже через вольтамперметр.

Для точной (тонкой) регулировки тока и напряжения можно ввести дополнительные переменные резисторы номиналом около 5% от основного регулятора. Например, с Р3 можно подключить последовательно переменный резистор на 220 Ом, а с Р2 можно подключить последовательно переменный резистор на 20 кОм и повторно произвести настройку ограничения тока.

Вот таким получился лабораторный блок питания своими руками. Приносим огромную благодарность Владимиру Сметанину, который не побоялся собрать прототип платы и героически преодолел все трудности сборки блока, чтобы предоставить действительно интересные материалы!

Благодаря Владимиру, лабораторный блок питания имеет индивидуальную лицевую панель, созданную с помощью ЧПУ фрезеровки.

Как и обещали, плату блока можно скачать тут:

Ну и демонстрация работы лабораторного блока питания:

Присылайте в комментах фото, какой лабораторный блок питания получился у Вас, собранный по этой схеме, будем добавлять в статью — так станет интереснее!

Работы наших читателей

Первым решил поделиться своей поделкой Денис Фролов. До этой сборки вообще не имел дела с радиоэлектроникой. Трансформатор используется тороидальный. Плата вытравлена при помощи фоторезиста, наклеена навигация. Денис решил немного усложнить блок, добавлена настольная зарядка для девайсов.

Следующим прислал свой фотоотчет Старков Сергей. Радиоэлектроникой занимался еще с 15ти летнего возраста. Трансформатор брал на 160 ватт с вых. 12,25,36 вольт. Корпус так же как и трансформатор взят с какого-то киповского оборудования. Вольтамперметр как и у всех — китайский. Лицевую часть делал в программе FrontDesigner 3.0, распечатал на струйном принтере на фотобумаге и покрыл лаком. корпус правда еще не успел покрасить.

Прекрасную работу прислал нам Роберт Ганеев  из Татарстана. Плату Роберт изменил под свой корпус, использовал три транзистора TIP36C, при сборке возникли небольшие трудности с параллельной работой трех транзисторов. Проблему решили уменьшением R1 до 10 Ом.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

Схема источника питания,блока питания,импульсного, и зарядные устройства

Подробности

    У многих дома лежит старый принтер с поломанной печатающей головкой, или по каким то иным причинам. Кто то просто выкидывает, не подразумевая что в нем есть хорошие детали, из которых можно что нибудь смастерить.

 В данной статье мы рассмотрим то, как сделать своими руками регулируемый блок питания из БП от принтера.

Подробнее…

Подробности

     Если понадобился блок питания, нет навыков в радиотехнике. Нашлось решение в том, как сделать своими руками блок питания из энергосберегающей лампочки.

Подробнее…

Подробности

    Это лабороторный блок питания от 0 до 30вольт на выходе. Регулируется это все подстроечным резистором. Для простоты, индикатор тока и напряжения, был приобретен на всем известном китайском сайте.

Подробнее…

Подробности

зарядное устройство из компьютерного блока питания своими руками

 

В различных ситуациях требуются разные по напряжению и мощности ИП. Поэтому многие покупают или делают такой, чтоб хватило на все случаи.

И проще всего взять за основу компьютерный. Данный лабораторный блок питания с характеристиками 0-22 В 20 А переделан с небольшой доработкой из компьютерного АТХ на ШИМ 2003. Для переделки использовал JNC mod. LC-B250ATX. Идея не нова и в интернете множество подобных решений, некоторые были изучены, но окончательное получилось свое. Результатом очень доволен. Сейчас ожидаю посылку из Китая с совмещенными индикаторами напряжения и тока, и, соответственно, заменю. Тогда можно будет назвать мою разработку ЛБП — зарядное для автомобильных АКБ.

 

Подробнее…

Подробности

Блок питания своими руками

 

Многие устройства требуют 2-х канального,  или как его ещё называют двухполярного питания. В простеёшем варианте можно обойтись предлагаемой схемой блока питания своими руками, которая обеспечивает стабильную регулировку и поддержание при разных токах двухполярного напряжения в диапазоне от ±1.5 В до ±17 В. Она основана на линейных регуляторах напряжения LM317/LM337, которые имеют защиту от короткого замыкания.

 

 

 

Подробнее…

Подробности

Блок питания 0-30 Вольт своими руками

Сколько всяких интересных радиоустройств собирают радиолюбители, но основа, без которой не будет работать практически ни одна схема — блок питания. .Часто до сборки приличного блока питания просто не доходят руки. Конечно промышленность выпускает достаточно качественных и мощных стабилизаторов напряжения и тока, однако не везде они продаются и не у всех есть возможность их купить. Проще спаять своими руками.

Подробнее…

Подробности

Схема импульсного блока питания на 600Вт для УНЧ

 

При сборке мощных усилителей, кто собирал, знает что нужен для питания мощный блок питания, а как известно габариты трансформаторов в них очень дорогие, и при этом добавляют значительный вес.

Блок питания в этой статье обладает мощностью подходящей для многих УНЧ, так как его мощность 600Вт, но можно использовать и в других целях его, можно сделать запросто своими руками.

Подробнее…

Подробности

Регулируемый блок питания на транзисторах

 

Каждый радиолюбитель, особенно когда начинает заниматься радиотехникой, хочет собрать своими руками блок питания где можно было бы регулировать напряжение на выходе.

Так как все предворительно собранные схемы, нужно на чем то проверять,и плавно подовать напряжение и просто что бы неприходилось собирать каждый раз блок питания на определенное напряжение.

Подробнее…

Подробности

Импульсный блок питания на IR2151-IR2153

Плюс любого импульсного блока питания состоит в том что не требуется намотки или покупки громоздкого трансформатора.А требуется всего лишь трансформатор с несколькими витками.Данный блок питания сделать самому несложно и требует немного деталей. И основа,это то что блок питания на микросхеме IR2151

 

 

 

 

Подробнее…

РадиоДом — Сайт радиолюбителей

В данной статье рассмотрим вариант нетрадиционного использования операционного усилителя. При выходном напряжении 3 вольт схема обеспечивает ток в нагрузке до 500 мА, коэффициент стабилизации около 1500, ток короткого замыкания почти 1 ампер.

Добавлено: 15.01.2019 | Просмотров: 2799 | Блок питания

Описываемый в статье лабораторный источник питания обеспечивает стабилизацию как тока, так и напряжения. Его сердцем является электронный стабилизатор — именно он отвечает за все выходные параметры устройства. При сравнительной простоте устройства стабилизатор имеет неплохие параметры, очень прост в использовании.

Добавлено: 28.12.2018 | Просмотров: 4556 | Блок питания

Представленный в статье блок питания способен выдавать ток в нагрузке до 25 ампер, выходное напряжение регулируется плавно в диапазоне 1,5…30 вольт. Устройство можно также использовать как зарядное устройство для АКБ. Напряжение от силового трансформатора выпрямляется двухполупериодным выпрямителем на диодах VD1…VD6.

Добавлено: 06.10.2018 | Просмотров: 28195 | Блок питания

Схема стабилизированного мощного блока питания 12 вольт 20 ампер. Сетевой трансформатор Т1 рассчитан на мощность 450 Ватт и имеет вторичную обмотку на 15 вольт переменного напряжения. Основным стабилизатором является ИМС DA1 К142ЕНЗ. Резистором R1 устанавливают ток ограничения. Резисторы R4….R6 считаются выравнивающими и исполнены из проволочных резисторов.

Добавлено: 25.06.2018 | Просмотров: 6509 | Блок питания

Мощный лабораторный регулируемый блок питания собран на микросхеме LM723, которая представляет собой интегральный готовый стабилизатор с регулируемым выходным напряжением и неплохой схемой защиты от перегрузки. Выходное напряжение блока питания от 2 до 30 вольт с максимальным выходным током 20 ампер.

Добавлено: 24.06.2018 | Просмотров: 20275 | Блок питания

Напряжение питания бортовой сети легкового автомобиля составляет 12 вольт. Если задаться сопротивлением акустической системы равным 4 Ом, то максимальная мощность, которую можно получить при таком напряжении питания составит 36 ватт. Это самый теоретический максимум, предполагающий мостовое включение усилителя и нулевое сопротивление транзисторов выходного каскада в открытом состоянии, то есть, практически для цифрового импульсного усилителя.

Добавлено: 24.03.2018 | Просмотров: 4037 | Блок питания

Описанная в статье схема предназначена для питания ноутбуков, а именно повышает напряжение автомобильной аккумуляторной батареи 12 вольт до 19 вольт. Известные схемы автомобильных повышающих преобразователей напряжения питания для них построены по принципу повышающего импульсного преобразователя с использованием силового трансформатора или накопительного дросселя.

Добавлено: 12.03.2018 | Просмотров: 2946 | Блок питания

Схема мощного лабораторного блока питания на напряжение 0-18 вольт, ток до 3 ампер с регулируемой защитой. Напряжение — 5 вольт получено с MAX660, силовой транзистор заменен на TIP121, операционные усилители все OP07CP. Кроме того, вместо гасящего резистора на входе 7812, добавился еще один стабилизатор 7818.

Добавлено: 16.02.2018 | Просмотров: 2550 | Блок питания

Схема представляет собой классический обратноходовый блок питания на базе ШИМ UC3842. Поскольку схема базовая, выходные параметры блока питания могут быть легко пересчитаны на нужные. В качестве примера для рассмотрения выбран блок питания для ноутбука с питанием 20 вольт 3 ампер. При необходимости можно получить несколько напряжений, независимых или связанных.

Добавлено: 04.02.2018 | Просмотров: 3519 | Блок питания

Набор для сборки линейного регулируемого блока питания 35 Вольт 5 Ампер

Честно говоря заказал я данный набор скорее по остаточному принципу, добить посылку, но в итоге оказалось что он может быть весьма полезен, особенно для начинающих радиолюбителей. Некоторое время назад я делал обзор простого регулируемого блока питания и как выяснилось, он оказался полезным, а теперь представьте что это примерно такой же БП но:
На большее напряжение
На больший ток
С переключением обмоток трансформатора
С управлением вентилятором

Интересно? Тогда думаю не прогадаете.

Начну я сегодняшний обзор с того, что расскажу сначала о продавце, а точнее о том, что случайно выяснилось что это уже четвертый обзор его товаров, предыдущие думаю также запомнились и в них были описаны:
1. LCR-метр
2. Простой осциллограф
3. Электронная нагрузка

Собственно потому могу посоветовать заказывать у этого продавца сразу несколько товаров, особенно выгодна комбинация нагрузка + БП.

Приходит от посредника это все в одном пакете, судя по информации от него же весит комплект 175 грамм, для покупок с Тао вес имеет значение.

В итоге вы должны получить печатную плату и большой пакет с деталями, коробок в комплект не входит и приведен для понимания размера 🙂

Как и в случае с электронной нагрузкой схема в комплект не входит, вся необходимая для сборки информация нанесена на плату в виде шелкографии. Здесь указаны номиналы каждого компонента, потому проблем со сборкой быть не должно.

Монтаж полностью односторонний, SMD компоненты отсутствуют, что на мой взгляд может быть важно для начинающего радиолюбителя.

Качество шелкографии очень хорошее, печать четкая, все отлично видно.

А вот трассировка не очень оптимальна, на торец платы вынесены места под силовые транзисторы и там же расположен разъем подключения трансформатора, потому что-то одно придется подключать проводами в плату, впрочем к этому я еще вернусь.

Существует четыре варианта комплектации лота:
1. Полный комплект, детали плюс плата, мой вариант, цена около $8.64
2. Все то же самое, но без пары выходных транзисторов, цена около $7.76
3. Все компоненты, но без печатной платы, цена около $6.73
4. Плата без компонентов, цена около $1.9 доллара.

Так как компонентов довольно много, то я бы рекомендовал первый вариант, но так как компоненты не все хорошего качества (например конденсаторы), то возможно подойдет и вариант 4, варианты 2 и 3 как по мне смысла особо не имеют.

А вот здесь проявился минус ТаоБао, у меня в комплекте забыли положить ручки переменных резисторов, стоят копейки, но жалко 🙁

На странице товара приведена схема блока питания, что также может помочь в сборке, мне все таки пару раз пришлось к ней обращаться, но о нюансах я напишу в разделе сборки. Качество схемы не очень высокое, продавец предлагает ее «в HD», но как скачать, а не понял.

В общем-то схема ничего принципиально нового не содержит, на одном ОУ собран сам БП, на втором переключатель обмоток, внизу виде узел управления питанием вентилятора. Немного смущает «кривое» питание ОУ и обмотка со средней точкой для питание внутренней электроники, которая в данном случае вообще смысла не имеет.
Также несколько непривычно включение переменных резисторов, двумя проводами, при чем увеличение напряжения/тока соответствует увеличению сопротивления резистора.

Основные узлы блока питания.
1. Зеленый — собственно регулируемый стабилизатор напряжения и тока, слаботочная часть плюс цепь питания
2. Красный — силовая часть регулятора, выпрямители и реле
3. Синий — Схема управления реле переключения обмоток
4. Фиолетовый — управление вентилятором.

Не буду ходить вокруг и перейду к сборке, но так как описание процесса нужно скорее в качестве дополнения, то спрячу эту часть под спойлер.


В комплекте идет 10 номиналов мелких резисторов. При монтаже проще было быстро измерить тестером, чем искать по маркировке.

Вот здесь вылезла мелкая проблемка, у двух резисторов маркировка на плате попала под лужение и пришлось искать их по схеме. В данном случае это пара резисторов 100 Ом, собственно с них я и начинал монтаж. Кроме того рекомендую немного приподнять их над платой, так как китайской краске на резисторах доверия у меня нет.

Вид платы с запаянными резисторами. Больше проблем у меня на этом этапе не возникло.

Также дали диоды и стабилитроны, с диодами и стабилитронами проблем не возникло, маркировка есть на них самих, при этом 1N5408 и 4007 внешне спутать крайне тяжело, а по стабилитронам есть даташит с вариантами маркировки.
Сложности возникли только с компонентом в мелком стеклянном корпусе, я сначала решил что это 4148 со стертой маркировкой, но это термистор и к диодам он отношения не имеет, будьте внимательны.

Маркировка есть, но местами найти место довольно сложно, диоды и стабилитроны стоят на плате вертикально.

У стабилитронов совсем мелкая маркировка на плате, ниже на фото показано как устанавливать компонент.
Все компоненты я обычно устанавливаю единообразно, часто катодом (полоска на корпусе), но в случае с диодом 5408 пришлось поступить наоборот, решил что так он меньше будет мешать подключениям к плате. Диод в работе не греется, потому конденсаторам также мешать не будет, он стоит параллельно выходу для защиты.

1. Дальше паяем конденсаторы, благо их на плате мало, а маркировка указана в том же формате что и на самих конденсаторах.
2. Слева на фото регулируемый стабилитрон TL431 и три транзистора SS8050, устанавливать их лучше после конденсаторов, перед монтажом габаритных компонентов.
3. С подстроечными резисторами также проблем не возникло, единственно маркировка на плате указана как 501 (500 Ом) у одного и 10к и 100к у остальных, на фото это резисторы с обозначением 103 и 104 соответственно.
4. Также есть шесть мощных резисторов, здесь можно ошибиться, у средних на плате написано 7.5 кОм, а резисторы дали 2.2 кОм, у продавца это написано, но кто там читает 🙂 Резисторы 2.2 кОм (средние) стоят параллельно входу питания и выходу БП.
Резисторы в работе могут нагреваться, потому чтобы они не грели плату я их немного поднял отформовав выводы.

В установленном виде.

В качестве источника опорного напряжения используется TL431, но расположен он совсем не оптимально, как раз между мощными резисторами, которые хоть и не сильно, но греются в работе, особенно правый.

Разъемы, клемники и панельки. Здесь меня немного запутало то, что разъемов дали как-то слишком много, а кроме того не совсем понятно как его планировал ставить производитель.
Кстати, клемники довольно хорошего качества, с «лифтовым» механизмом. На заявленном для БП токе проблем быть не должно.

В итоге у меня осталось два трехконтактных разъема, которые я не нашел куда пристроить, возможно производитель планировал сделать некий переходник для питания вентиляторов или еще что-то.
Двухконтактные разъемы можно установить в почти произвольном порядке, но я рекомендую это делать так, как показано на фото,.
Мелкие разъемы ставим для подключения светодиода, термистора и переменных резисторов, более крупные для вентилятора и ампервольтметра. Трехконтактный на плате один, потому здесь вариантов мало.

С разъемом подключения вентилятора возникла небольшая заминка. Если ставить как показано на фото, то цвета родного кабеля не будут соответствовать полярности, но будут соответствовать расположению контактов на разъеме стандартного вентилятора, ну а чтобы не путаться, разъем питания ампервольтметра был установлен также как разъем вентилятора.

Вот уже пошли и габаритные детали. В пакете нашлись конденсаторы:
2200 мкФ 50 Вольт, 3шт
2200 мкФ 25 Вольт, 2шт (на плате указан как 1000мкФ 25 Вольт)
680 мкФ 35 Вольт, 1шт (на плате указан как 470 мкФ 35 Вольт)
470 мкФ 25 Вольт, 1шт (на фото не попал, закатился).
220 мкФ 16 Вольт, 3шт
100 мкФ 50 Вольт, 1шт
4.7 мкФ 50 Вольт, 1шт.

Конденсаторы все «китайские», если хочется «как лучше», то можно заменить на фирменные.

Реле самые обычные, безымянные, по заявленному току подходят с запасом.

Свободного места на плате явно стало гораздо меньше, фактически она почти собрана.

Из того, что устанавливается еще на плату остались только мощные транзисторы и стабилизаторы. В комплекте к ним идут (неожиданно) изолирующие прокладки.
Прокладки ставить можно даже не пытаться, крайне неудобно, они больше чем место внутри радиатора, в итоге я их заменил на слюду, у кого ее нет, могут просто подрезать родные прокладки. Также можно сразу выкинуть родные винты, они имеют потайную шляпку и просто расколят изолирующие втулки, заменил их на винты от материнской платы с большой головкой.
У одного радиатора отверстие было чуть чуть смещено, из-за чего корпус микросхемы почти касался радиатора, но прозвонка показала что все в порядке. Думаю изоляторы нужны потому, что под радиаторами на плате есть дорожки и радиатор может процарапать маску над ними. Как вариант, можно не изолировать сам компонент, а обеспечить изоляцию под радиатором.

На этом же этапе сборки установил и операционные усилители, метки для установки есть на плате.

Собственно плата полностью собрана. по итогам сборки предварительно могу сказать, что особых каких-то проблем не возникло, но сама плата выглядит немного… неэстетично, нет в ней красоты.

Кроме того разъемы хорошо было бы вынести на край платы, а не размещать в середине. Ну и небольшой минус, выяснилось что выход БП подключается пайкой, а не клемником.

После пайки флюс лучше смыть, но не столько из-за влияния на электронику, сколько из-за внешнего вида. по желанию потом можно покрыть лаком Пластик-70

Паяется плата на отлично, я использовал припой с флюсом и самый обычный паяльник с контролем температуры.

А это судя по всему фото прототипа, найденное на странице товара, вид попроще, но вот радиаторы заметно больше.

И так, у меня остались провода, выходные транзисторы, диодный мост и прочая мелочь.

А вот теперь подключение и регулировки платы.
1. 0-15-25-35 Вольт — подключение силового трансформатора. Напряжения считаются относительно точки 0.
2. Диодный мост и транзисторы, думаю понятно и так
3. Рег реле 25 и 35 Вольт, регулировка напряжения при котором подключаются дополнительные соответствующие обмотки.
4. Рег температуры и термистор, соответственно регулировка включения вентилятора и разъем подключения термистора, полярность термистора значения не имеет.
5. 12-15 Вольт, вход дополнительного питания переменного тока 12-15 Вольт, можно использовать одну обмотку.
6. Пит Амперметра — подключение питания амперметра для измерения выходного тока, стабилизированные 12 Вольт
7. Вентилятор — разъем подключения вентилятора.
8. Корр тока — установка диапазона регулировки выходного тока
9. Уст тока — Регулировка выходного тока. (резистор 10к)
10. LED CC, светодиод индикации режима ограничения тока
11. Корр напряжения — установка диапазона регулировки выходного напряжения.
12. Уст напряжения — Регулировка выходного напряжения (резистор 10к)
13. Выход — Выходные площадки для подключения нагрузки к БП.
14. Амперметр — подключение амперметра, если не используется, то закоротить перемычкой.

Теперь о регулировках.
Напряжение переключения обмоток.
1. Крутим резисторы влево до крайнего положения или около того, как вариант до выключения обоих реле.
2. Выставляем на выходе напряжение около 9-10 Вольт и крутим резистор 25 Вольт вправо пока не включится первое реле.
3. Выставляем на выходе напряжение около 20-22 Вольт и крутим вправо резистор 35 Вольт пока не включится второе реле.
4. Всё.

Диапазон регулировки выходного напряжения/тока.
1. Крутим вправо до упора резистор регулировки напряжения.
2. Вращением соответствующего подстроечного резистора добиваемся на выходе требуемого нам напряжения, например 35 Вольт
3. Повторяем то же самое с регулировкой тока, в качестве нагрузки можно использовать мультиметр.

Для увеличения тока вращать подстроечный резистор влево, напряжения — вправо.

Включение вентилятора.
1. Под нагрузкой разогреваем радиатор до той температуры когда он начинает обжигать руку, это около 50-55 градусов
2. Вращаем влево резистор пока не включится вентилятор. Температуру можно поднять до 60-70 градусов, но уже с измерением при помощи термометра.
Кстати вентилятором управляет довольно мощный транзистор, который установлен скорее из-за большого корпуса, вентилятор имеет примитивную схему управления и у него нет четкого включения/выключения, переход плавный и он может работать на малой скорости, но диапазон температур от выкл до полной мощности довольно узкий.

Если у вас трансформатор только с двумя обмотками, например от БП усилителя где к примеру пара обмоток по 18 Вольт со средней точкой, то можно использовать и его, хотя нагрев конечно будет больше. В этом случае вместо второго реле ставится перемычка.

У переменных резисторов соединяются два левых вывода, а сам резистор подключается двумя проводами.
Термистор также имеет двухпроводное подключение, после припаивания изолируем термоусадкой.
Вход подключения дополнительного питания рассчитан на обмотку с отводом от середины, как по мне, то крайне неудобно, можно соединить крайние выводы разъема и питать от одной обмотки 12-15 Вольт, работать будет так же.

Провод подключения вентилятора и ампервольтметра я не использовал, остальные перед пайкой свил чтобы было аккуратнее и меньше наводилось помех. Черная термоусадка была в комплекте.

Здесь я сделаю небольшое отступление, на плате есть место под установку диодного моста, но при токе в 5 Ампер он быстро поджарится и я решил вынести его за пределы платы, потому на этом фото не только транзисторы, а и диодный мост.
Транзисторы TIP3055, 15 Ампер 60 Вольт 90 Ватт, при этом в БП каждый транзистор работает при токе 2.5 Ампера, напряжении до 50 Вольт и рассеивает мощность до 35-40 Ватт, потому небольшой запас еще есть.

Для тестов я использовал относительно небольшой радиатор, в реальной эксплуатации можно вполне применить компьютерный кулер от более-менее мощного процессора. Из-за того что есть переключение обмоток, то даже в самом худшем режиме (КЗ) на нем будет рассеиваться около 75-80 Ватт что вполне сопоставимо с процессором.
Транзисторы от радиатора изолированы, если этого не сделать, то тепловое сопротивление будет меньше, но на радиаторе будет плюс силового питания.

Можно сказать что к тестам готовы 🙂

В ходе тестов был применен вентилятор с трехконтактным разъемом, в этом случае он подключается контактами с красным и черным проводом так, как показано на фото.

Производитель на странице товара выложил вариант применения с не очень распространенным, но интересным ампервольтметром, но вот что-то он мне на момент написания обзора не попался, там вроде ток был до 5 Ампер и цена доступная.

Зато у другого продавца видел не менее интересный приборчик, давно хочу купить поиграться, тем более что он имеет диапазон измерения тока до 10 Ампер, напряжения до 95 Вольт и может подключаться к компьютеру для мониторинга. Но стоит 13 баксов — ссылка .

Ладно, что то я увлекся. Подключаю к плате проверенный комплект из двух трансформаторов + небольшой для вспомогательного питания. Трансформаторы дают в сумме три напряжения кратные 12 Вольт. Кстати, производитель платы рекомендует не комбинацию 12+12+12, а 15+10+10, как я примерно писал в обзоре платы для мощного регулируемого БП, такая комбинация напряжений более оптимальна.

А теперь проверим на что способна данная платка.
1. Минимально можно выставить -0.1 Вольта. Да, именно отрицательное, я с таким встречают не впервые.
2. Максимум 21 Вольт в минимально положении подстроечного резистора диапазона.
3. Дальше я попытался отрегулировать максимальное напряжение подстроечным резистором и получил всего 26 Вольт, маловато.
4. Сначала думал припаивать какие нибудь резисторы для проверки, но помня что резистор регулировки при увеличении сопротивления увеличивает значение напряжения или тока, то просто выдернул разъем и без проблем получил полное выходное.
5. По току минимум 0, при этом светодиод индикации СС светит, нагрузкой является выходной резистор БП.
6. Здесь проблем с калибровкой не было, выставил 5 Ампер.

Потом решил покрутить подстроечный резистор дальше и также без проблем получил и 6 Ампер.

Но мне не нравилась ситуация с ограничением по выходному напряжению и ее как-то надо было решать. Подозрение пало на вспомогательное питание, измерил напряжение на выходе трансформатора и выяснил что там всего 11 Вольт, взял другой трансформатор, с выходным около 24 Вольта, с ним легко выставил на выходе даже 42 Вольта.
Дело в том, что вспомогательное напряжение стабилизируется при помощи стабилизатора 12 Вольт, а ей на выходе надо хотя бы 15, кроме того на плате есть питание со стабилитроном на 15 Вольт. Но при входном 11 Вольт получить напряжение более 15-16 Вольт сложно и в итоге была просадка.

После этого захотелось проверить максимальную выходную мощность, которую можно получить в таком варианте, но примерно через 20 секунд теста раздался громкий хлопок и я получил такое чудо….
Да, когда я заменил трансформатор, то как-то совсем забыл об этих конденсаторах и потому получил вполне закономерный результат, на них было около 32 Вольт.

Но «шоу должно продолжаться» и пострадавшие были заменены на более фирменные Samwha 1000мкФ 35 Вольт.

В итоге я получил на выходе более 200 Ватт, при токе нагрузки 5 Ампер и напряжении 41 Вольт. По моему совсем неплохо.

Далее тест проверки стабильности поддержания выходного напряжения в зависимости от тока нагрузки. Здесь также довольно неплохо, хотя напряжение все таки немного плыло, но возможно это было из-за контакта между нагрузкой и платой так как нагрузка была подключена к щупам мультиметра, а те в свою очередь были просто вставлены в отверстия платы.
Тест с током 1, 2, 3.5 и 5 Ампер.

В процессе работы плата заметно греется. Наиболее всего греются мощные резисторы.
1. При низких напряжениях греются резисторы вспомогательного питания, которые включены совместно со стабилитронами 6.2 и 15 Вольт, особенно греется ближний к краю платы, через который питается стабилитрон 6.2 Вольта.
2. Если на выходе выставить напряжение более 20-30 Вольт, то начинают сильно греться резисторы 2.2 кОм, расположенные в правом верхнем углу. Нагрев одного зависит от выходного напряжения, а нагрев второго от входного которое максимально когда выходное более 20-22 Вольт. Думаю что лучше их заменить на что нибудь около 3.3-4.7 кОм.

Температура резисторов в обоих случаях порядка 100-110 градусов.

И последний тест, оценка размаха пульсаций на выходе. К сожалению они есть, с частотой 100 Гц. В обоих случаях нагрузка была около 4 Ампер (автомобильная лампа), но в первом стоят только родные входные конденсаторы, во втором я параллельно им подключил еще один, емкостью 10000мкФ, правда на проводах длиной около 10см.
В первом случае размах 50 мВ, во втором 25 мВ.

На мой взгляд пульсации на выходе являются следствием не столько недостатка входной емкости, здесь я считаю как раз все в порядке, сколько несколько странной схемой обратной связи (отмечена красным).
Кроме того мне не нравится что по выходу стоит конденсатор емкостью целых 100 мкФ (помечено зеленым), думаю что лучше его уменьшить до 10-22 мкФ. На пульсации он по сути не влияет, но влияет на бросок тока при переходе с режима CV к режиму СС.

Видеоверсия обзора

И конечно некоторые выводы основанные на результатах процесса сборки и тестов.
Для начала о самом конструкторе.
Нареканий не очень много, но они есть. Забыли положить ручки к резисторам, неудобные изолирующие прокладки, диодный мост надо выносить на радиатор, конденсаторы посредственного качества.
Но есть и достоинства, все собирается без особых сложностей, мало того, оно потом еще и работает обеспечивая даже больше заявленных 35 Вольт 5 Ампер, я смог получить напряжение до 42 Вольт, а ток до 6 Ампер и не думаю что это предел.

По результатам тестов можно реально придраться только к повышенному уровню пульсаций, но думаю что есть шанс это доработать.

В общем и целом набор немного сыроват, но на мой взгляд интереснее чем известная плата 30 Вольт 3 Ампера, обзор которой я как-то делал. Ключевые отличия:
1. Напряжение до 35 Вольт, реально можно поднять и больше.
2. Ток до 5 Ампер, но также можно увеличить.
3. Емкость входного конденсатора 6600 мкФ против 3300 у 3 Ампера варианта
4. В 3 Ампера БП был один силовой транзистор, здесь два.
5. Есть переключение обмоток трансформатора, три ступени.
6. Добавлено управление вентилятором в зависимости от температуры.
7. Шунт измерения тока стоит в положительном полюсе, а не земляном.

Существенный недостаток только один, у обозреваемого варианта выше уровень пульсаций, скорее всего обусловленный схемными недоработками.

Спонсором данного обзора выступил посредник yoybuy.com, который взял на себя оплату доставки.
Стоимость комплекта с учетом доставки к посреднику вышла $11.09, вес комплекта 175 грамм, стоимость доставки от посредника зависит от разных факторов, например количества, а также наличия других товаров в заказе.
Товар на Алиэкспресс — ссылка

Простой источник питания для лаборатории DIY

Автор: admin 25.01.2015

Блок питания для самостоятельной лаборатории, вид спереди

Меня немного расстроил мой старый лабораторный блок питания Manson EP925. Купил б / у много лет назад, в студенческие годы. Проблема в том, что у него только один выход. Для многих проектов электроники мне нужно несколько напряжений, например 3V3 и 5V.

Dangerous prototypes продает печатную плату, которая позволяет переработать блок питания ATX в настольный блок питания.К сожалению, у меня не было блока питания ATX, но у меня была пара старых блоков питания для ноутбуков. В сочетании с некоторыми дешевыми китайскими платами регуляторов от Ebay я сделал лабораторный источник питания. Зарядное устройство для ноутбука, которое я использую, выдает стабильное напряжение 12 В и может обеспечивать ток 5 А. Этого более чем достаточно для большинства проектов в области электроники.

Вот блок-схема моего лабораторного блока питания:

Блок-схема лабораторного блока питания


Всего у моего лабораторного блока питания DIY 10 крепежных штырей.Те, что слева, обеспечивают 12В, 5В и 3В3. Выход 12 В поступает напрямую от блока питания ноутбука. 5V и 3V3 обеспечиваются модулями KIM055L и KIM035L. Они могут выдавать ток 5А. Остальные 4 — это выходы регулятора LM2596-регулируемого и регулятора XL4015. LM2596 — это простая плата регулируемого регулятора напряжения. Я распаял подстроечный резистор и припаял к нему штатный потенциометр.
Коммутационная плата XL4015 настроена как стабилизатор постоянного тока. Он имеет 2 подстроечных резистора для установки напряжения и тока.Я снова снял с платы подстроечные элементы и припаял к ней 2 потенциометра. Я прикрепил 3 потенциометра к передней панели и добавил 3 красивые кнопки, чтобы я мог легко их регулировать.
Измеритель на левой панели показывает выходное напряжение LM2596, измеритель на правой панели отображает напряжение и ток выхода XL4015.

Я разработал коробку в Draftsight и сделал ее лазерной резкой из акрилового листа в местной компании. Вы можете скачать файл DWG здесь. Дизайн рассчитан на 4-миллиметровый акриловый лист, как и у моей местной компании по лазерной резке.BTW Draftsight — это бесплатная программа САПР, работающая даже в среде GNU / Linux.
Я купил регуляторы и щитовые приборы на Ebay. Штыри, потенциометры, кнопки, выключатель питания, предохранитель и гнездо постоянного тока поставляются электроникой Tayda. Для распределения 12 В от блока питания ноутбука к различным модулям я использовал 8-позиционную клеммную колодку с винтовыми зажимами.

Лабораторный блок питания DIY, вид сбоку


Блок питания DIY лаборатории, вид сзади

Рубрика: Покупка запчастей | Tagged электроника |

Блок питания My DIY Bench

Опубликовано 18 декабря 2012 г.

Еще одна вещь, которая нужна всем (и, вероятно, построила), — это простой лабораторный настольный блок питания. Многие люди используют такие вещи, как модифицированные блоки питания для ПК, но я не был сторонником этого, потому что хотел что-то меньшего размера, с меньшим током и более чистым (с точки зрения радиочастот). Мне не нужно ничего особенно мощного, просто что-то, чтобы обеспечить несколько общих напряжений для цифровой логики и небольших радиочастотных схем. Вот что я придумал!

На изображении выше вы можете увидеть обычный светодиод, который питается напрямую от 5-вольтовой розетки. Токоограничивающего резистора нет, поэтому через светодиод проходит много тока, который сжигается, когда я его фотографировал.Амперметр (синий номер) показывает, что он потребляет 410 мА — эй! Макет довольно простой. Каждое подключение к красной банановой вилке обеспечивает напряжение (5, 5, 12 и переменное соответственно). Черные соединения заземлены. Черный разъем в верхнем левом углу — это заземление, чувствительное к току, и ток, проходящий через него, будет отображаться на синем циферблате. Правый циферблат показывает напряжение источника переменного напряжения и может варьироваться от 3,5 до 30,5 В в зависимости от того, где установлен потенциометр. Все выходы напряжения рассчитаны на ток около 1А.

Я построил это, используя множество компонентов (eBay), которые у меня были под рукой. Я часто экономлю деньги там, где могу, снабжая свой верстак компонентами, которые покупаю оптом. Вот что я использовал:

  • Вольтметр постоянного тока 4,5–3,0 В — 2,08 доллара США (отправлено) eBay
  • 0-9,99 Амперметр — 4,44 доллара США (с доставкой) eBay
  • L7805 Стабилизатор напряжения 5 В — 10 за 3,51 доллара (0,35 доллара за шт.) (Отправлено) eBay
  • L7812 Стабилизатор напряжения 12 В — 20 за 3,87 доллара (0,19 доллара за шт.) (Отправлено) eBay
  • Стабилизатор переменного напряжения
  • LM317 — 20 за 6 долларов.15 (0,30 долл. США за шт.) (Отправлено) eBay
  • линейный потенциометр 10 кОм — 10 за 4,00 (0,4 доллара США за шт.) (Отправлено) eBay
  • подключения банановой вилки — 20 за 3,98 доллара (0,20 доллара за шт.) (Отправлено) eBay
  • Алюминиевый корпус
  • — 3,49 $ (радиошак)

ИТОГО: 13,60 $

Фактически работает переменное напряжение? Вольтметр точен? Давай проверим.

Я бы сказал, работает нормально! Теперь у меня новый взгляд на рабочий стол.

Примечание о желтом цвете: Приобретенный мной корпус изначально был из серебристого алюминия.Я отшлифовал его (чтобы сделать поверхность шероховатой), затем распылил желтой краской из спрея рустолеум. Я подумал, что это должно было быть по металлу, так что я мог бы попробовать. Я распылил его один раз, затем нанес второй слой через 20 минут, а затем дал высохнуть в течение ночи. В будущем я бы попробовал покрыть поверхность лаком, потому что его немного легко поцарапать. Тем не менее, это выглядит довольно круто, и в будущем мне придется начать окрашивать распылением больше моих корпусов.

Примечание о сглаживающих конденсаторах. Практически на всех схемах линейных регуляторов напряжения, таких как LM7805, показаны разделительные конденсаторы до и после регулятора. Я добавил несколько конденсаторов разных номиналов на входе (вы можете увидеть их на схеме), но я намеренно сделал , а не , включил сглаживающие конденсаторы на выходе. Причина заключалась в том, что я всегда ставил сглаживающие конденсаторы в свои макеты и в свои проекты, ближе к реальной схеме. Если бы я включил (и полагался) на выходные конденсаторы на уровне источника питания, я бы улавливал радиочастотный шум 60 Гц (и другой мусор) в кабелях, идущих от источника питания к моей плате.Короче говоря, на выходе нет конденсаторов, поэтому всегда нужно использовать хороший дизайн и добавлять развязывающие конденсаторы во все создаваемые схемы.

Вход этой схемы представляет собой источник питания 48 В от устаревшего струйного принтера. Он был прикреплен к разъему RCA, чтобы его можно было легко подключать и отключать.

DIYfan: Регулируемый лабораторный блок питания

У меня уже есть несколько лабораторных блоков питания, все они сделаны мной. Последний (показанный здесь в действии) был почти идеальным — два канала, 1.2 — 30В / 3А — но ограничения по току не было. Вот почему я искал подходящую схему для построения. Я нашел эту схему: http://www.electronics-lab.com/projects/power/001/index.html.
Он имеет регулируемое выходное напряжение от 0 до 30 В и регулируемый максимальный выходной ток от нескольких миллиампер до 3 ампер.
Как выяснилось, в нем есть серьезные недостатки, но на форуме на этом сайте это было тщательно обсуждено, и участник audioguru предложил улучшенную схему, в которой были устранены все недостатки.Я использовал его схему для создания своего нового блока питания.
Этот небольшой радиатор предназначен только для тестовых целей, и в конечном продукте
будет гораздо больший радиатор и, возможно, также вентилятор.

После сборки и тестирования я внес два изменения: во-первых, я добавил стабилитрон 24 В + резистор для стабилизации напряжения питания на IC1. Это особенно важно, потому что, когда есть высокая нагрузка и напряжение падает на несколько вольт опорного напряжения на выводе 6 также значительно изменяется.
Во-вторых, снял подстроечный резистор RV1 на 10 кОм — в нем нет необходимости.

Вот окончательная схема:


Два триммера предназначены для регулировки максимального выходного тока и максимального выходного напряжения.

И несколько снимков второй PCB и платы в сборе:





Мои планы состоят в том, чтобы сделать 2 части в двух отдельных шасси, и когда мне нужно двойное напряжение питания или напряжение выше 30 В, я буду использовать оба из них.
На передней панели корпуса будут цифровые приборные панели, которые я уже заказал на eBay.

Обновление (13.03.2012) :
Наконец, через месяц после заказа, два трансформатора готовы. Они способны выдавать 30В / 4А.

Панельные счетчики также прибыли из Гонконга.


Как видите, я заменил резистор 0,47 Ом / 10 Вт на два резистора 0,68 Ом / 10 Вт, включенных параллельно, потому что первый выделял слишком много тепла.
Передняя панель тоже готова, позже выложу фото. Осталось сделать небольшую плату с контроллером вентилятора.

Вот ссылка для скачивания архива с файлами проекта в формате PDF: LabPS.rar

Первый из двух PS готов!
Вот маленькая плата контроллера вентилятора:



А есть сам блок питания:

Вот схема контроллера вентилятора:


На схему может подаваться напряжение переменного или постоянного тока, но не оба одновременно. Если напряжение питания постоянное, то B1, C2 и J3 можно не указывать. С другим значением R7 мы можем контролировать скорость вентилятора.Регулировка температуры включения производится с помощью TR2.

А вот ссылка для скачивания: FanControl.rar
Печатная плата отличается от той, что показана на картинке выше, потому что я сделал некоторые улучшения и изменения.
Используйте его под свою ответственность.
P. S. Здесь есть еще меньшая версия: FanControl2

Обновление: 17.05.2012

Второй блок почти готов. Вот один выстрел изнутри:


Вентилятор крепится к дну с помощью двустороннего скотча.

Обновление: 20.05.2012

Готово! Двойной регулируемый лабораторный блок питания 🙂

Обновление: 29 декабря 2015 г.

Меня несколько раз спрашивали, как подключить центральный ответвительный трансформатор к источнику питания. Это можно сделать в соответствии со схемой ниже. Мостовой выпрямитель заменен двумя диодами. Отрицательное напряжение поступает с одной из обмоток. Он исправляется D3 и сглаживается C3. D1 и D2 должны иметь высокий номинальный ток — не менее 5 А (диоды на схеме ниже приведены только для иллюстрации).C3 должен быть с номиналом 50 В или 63 В. R1 и R2 должны быть резисторами мощностью 2 Вт. Между -V и GND можно добавить конденсатор (100 мкФ) для дополнительного сглаживания отрицательного напряжения. Если отрицательное напряжение ниже 1,3 В, значение R1 и R2 можно немного уменьшить. Имейте в виду, что я не пробовал эту схему, просто моделировал ее, так что будьте осторожны.



30V 10A Настольный регулируемый источник питания


Здесь представлена ​​схема переменного настольного источника питания 30 В, 10 А, обеспечивающая регулируемое напряжение и ток.Блок питания построен на микросхеме регулятора напряжения LM723 и имеет ограничение по току. Я часто заканчиваю тем, что силовые зажимы замыкаются на скамейке и без проблем. Я использую эту схему уже более 20 лет и никогда меня не подводил, и это один из самых удобных гаджетов, которые я построил. Транзисторы 2N3055 — хорошо зарекомендовавшие себя сильноточные транзисторы. Для увеличения выходного тока можно соединить больше транзисторов 2N3055. Транзисторы необходимо установить на радиатор хорошего размера.


Мостовой выпрямитель также можно установить на радиаторе.
По этой причине я устанавливаю их на плату и подключаю к ним.

Конденсаторную батарею на входе можно заменить одной большой крышкой, если она у вас есть.

Резисторы мощностью 5 Вт будут довольно сильно нагреваться при высокой нагрузке, и их необходимо устанавливать так, чтобы вокруг них обтекал воздух.

Я часто припаивал их прямо к выводу транзисторов, а другую ножку соединяли вместе и подключали обратно к плате.

При покупке транзисторов 2N3055 просите, чтобы все они были одного и того же номера партии, так как это поможет устранить внутренние различия.

Возможно, потребуется изменить показанные значения потенциометров, чтобы обеспечить возможность регулировки в пределах желаемого диапазона напряжения и диапазона ограничения тока. Тест с закороченными выходными выводами скоро покажет максимальный диапазон настройки тока.

Потребуется подходящий трансформатор для необходимых усилителей. Это простая схема с полным набором компонентов.

Единственная потребность в печатной плате — это LM723, 3 небольших резистора и 2 конденсатора. Остальное крепится к радиатору или передней панели и подключается проводом.

Максимальное входное напряжение 40 Вольт.

Для получения более подробной информации см. Техническое описание LM723.





Загрузки

Настольный регулируемый источник питания 30 В, 10 А — Ссылка


Accurate LC Meter

Создайте свой собственный точный LC-метр (измеритель индуктивности емкости) и начните создавать свои собственные катушки и индукторы.Этот LC-метр позволяет измерять невероятно малые индуктивности, что делает его идеальным инструментом для изготовления всех типов ВЧ-катушек и индукторов. LC Meter может измерять индуктивность от 10 нГн до 1000 нГн, 1 мкГн — 1000 мкГн, 1 мГн — 100 мГн и емкости от 0,1 пФ до 900 нФ. Схема включает в себя автоматический выбор диапазона, а также переключатель сброса и обеспечивает очень точные и стабильные показания.

PIC Вольт-амперметр

Вольт-амперметр измеряет напряжение 0-70 В или 0-500 В с разрешением 100 мВ и потребляемый ток 0-10 А или более с разрешением 10 мА.Счетчик является идеальным дополнением к любым источникам питания, зарядным устройствам и другим электронным устройствам, в которых необходимо контролировать напряжение и ток. В измерителе используется микроконтроллер PIC16F876A с ЖК-дисплеем с подсветкой 16×2.


Измеритель / счетчик частоты 60 МГц

Измеритель / счетчик частоты измеряет частоту от 10 Гц до 60 МГц с разрешением 10 Гц. Это очень полезное стендовое испытательное оборудование для тестирования и определения частоты различных устройств с неизвестной частотой, таких как генераторы, радиоприемники, передатчики, функциональные генераторы, кристаллы и т. Д.

1 Гц — 2 МГц XR2206 Функциональный генератор

1 Гц — 2 МГц Функциональный генератор XR2206 выдает высококачественные синусоидальные, квадратные и треугольные сигналы высокой стабильности и точности. Формы выходных сигналов могут быть модулированы как по амплитуде, так и по частоте. Выход 1 Гц — 2 МГц Функциональный генератор XR2206 может быть подключен непосредственно к счетчику 60 МГц для настройки точной выходной частоты.


BA1404 HI-FI стерео FM-передатчик

Будьте «в эфире» со своей собственной радиостанцией! BA1404 HI-FI стерео FM-передатчик передает высококачественный стереосигнал в FM-диапазоне 88–108 МГц.Его можно подключить к любому типу стереофонического аудиоисточника, например iPod, компьютеру, ноутбуку, CD-плееру, Walkman, телевизору, спутниковому ресиверу, магнитофонной кассете или другой стереосистеме для передачи стереозвука с превосходной четкостью по всему дому, офису, двору или лагерь.

USB IO Board

USB IO Board — это крошечная эффектная маленькая плата разработки / замена параллельного порта с микроконтроллером PIC18F2455 / PIC18F2550.Плата USB IO совместима с компьютерами Windows / Mac OSX / Linux. При подключении к плате ввода-вывода Windows будет отображаться как COM-порт RS232. Вы можете управлять 16 отдельными выводами ввода-вывода микроконтроллера, отправляя простые последовательные команды. Плата USB IO получает питание от USB-порта и может обеспечить до 500 мА для электронных проектов. Плата USB IO совместима с макетной платой.


ESR Meter / Capacitance / Inductance / Transistor Tester Kit

ESR Meter Kit — удивительный мультиметр, который измеряет значения ESR, емкость (100 пФ — 20000 мкФ), индуктивность, сопротивление (0.1 Ом — 20 МОм), проверяет множество различных типов транзисторов, таких как NPN, PNP, полевые транзисторы, полевые МОП-транзисторы, тиристоры, тиристоры, симисторы и многие типы диодов. Он также анализирует такие характеристики транзистора, как напряжение и коэффициент усиления. Это незаменимый инструмент для поиска и устранения неисправностей и ремонта электронного оборудования путем определения производительности и исправности электролитических конденсаторов. В отличие от других измерителей ESR, которые измеряют только значение ESR, этот измеряет значение ESR конденсатора, а также его емкость одновременно.

Комплект усилителя для наушников для аудиофилов

Комплект усилителя для наушников для аудиофилов включает в себя высококачественные компоненты аудиосистемы, такие как операционный усилитель Burr Brown OPA2134, потенциометр регулировки громкости ALPS, разветвитель шины Ti TLE2426, конденсаторы с FM-фильтрацией Panasonic с ультранизким ESR 220 мкФ / 25 В, Высококачественные входные и развязывающие конденсаторы WIMA и резисторы Vishay Dale. 8-DIP-гнездо для микросхем позволяет заменять OPA2134 на многие другие микросхемы двойных операционных усилителей, такие как OPA2132, OPA2227, OPA2228, двойной OPA132, OPA627 и т. Д.Усилитель для наушников достаточно мал, чтобы поместиться в жестяной коробке Altoids, и благодаря низкому энергопотреблению может питаться от одной батареи на 9 В.


Комплект прототипа Arduino

Прототип Arduino — впечатляющая плата для разработки, полностью совместимая с Arduino Pro. Он совместим с макетной платой, поэтому его можно подключить к макетной плате для быстрого прототипирования, и на обеих сторонах печатной платы имеются выводы питания VCC и GND.Он небольшой, энергоэффективный, но настраиваемый с помощью встроенной перфорированной платы 2 x 7, которую можно использовать для подключения различных датчиков и разъемов. Arduino Prototype использует все стандартные компоненты со сквозными отверстиями для легкой конструкции, два из которых скрыты под разъемом IC. Плата оснащена 28-контактным разъемом DIP IC, заменяемым пользователем микроконтроллером ATmega328 с загрузчиком Arduino, кварцевым резонатором 16 МГц и переключателем сброса. Он имеет 14 цифровых входов / выходов (0-13), 6 из которых могут использоваться как выходы ШИМ и 6 аналоговых входов (A0-A5).Эскизы Arduino загружаются через любой USB-последовательный адаптер, подключенный к 6-контактному гнезду ICSP. Плата питается напряжением 2-5 В и может питаться от аккумулятора, такого как литий-ионный элемент, два элемента AA, внешний источник питания или адаптер питания USB.

4-канальный беспроводной пульт дистанционного управления с частотой 433 МГц, 200 м

Возможность беспроводного управления различными приборами внутри или за пределами вашего дома является огромным удобством и может сделать вашу жизнь намного проще и веселее.Радиочастотный пульт дистанционного управления обеспечивает дальность действия до 200 м / 650 футов и может найти множество применений для управления различными устройствами, и он работает даже через стены. Вы можете управлять освещением, вентиляторами, системой переменного тока, компьютером, принтером, усилителем, роботами, гаражными воротами, системами безопасности, занавесками с электроприводом, моторизованными оконными жалюзи, дверными замками, разбрызгивателями, моторизованными проекционными экранами и всем остальным, о чем вы можете подумать.

Источник питания 12 В — 30 А


Это сильноточный источник питания 12 В.Блок питания использует микросхему LM7812 и может подавать на нагрузку до 30А с помощью проходных транзисторов TIP2955. Каждый транзистор может работать с током до 5 А, а шесть из них дают общий выходной ток 30 А. Вы можете увеличить или уменьшить количество TIP2955, чтобы получить более высокий или более низкий выходной ток. В этой конструкции ИС выдает около 800 мА. После LM7812 подключается предохранитель на 1 А для защиты ИС от сильноточных переходных процессов. И транзисторам, и микросхеме стабилизатора 12 В требуется соответствующий радиатор.Когда ток нагрузки велик, рассеиваемая мощность каждого транзистора также увеличивается, поэтому избыточное тепло может привести к выходу транзисторов из строя. Тогда вам понадобится очень большой радиатор или вентиляторное охлаждение. Резисторы 100 Ом используются для обеспечения стабильности и предотвращения затухания тока, поскольку допуски усиления постоянного тока будут разными для каждого транзистора. Диоды выпрямительного моста должны выдерживать не менее 100 ампер.


Примечания
Входной трансформатор, вероятно, будет самой дорогой частью всего проекта.В качестве альтернативы можно использовать пару автомобильных аккумуляторов на 12 В. Входное напряжение регулятора должно быть как минимум на несколько вольт выше выходного напряжения (12 В), чтобы регулятор мог поддерживать свое выходное напряжение. Если используется трансформатор, то выпрямительные диоды должны быть способны пропускать очень высокий пиковый прямой ток, обычно 100 ампер или более. Микросхема 7812 пропускает только 1 ампер или меньше выходного тока, остальная часть обеспечивается внешними проходными транзисторами. Поскольку схема рассчитана на нагрузку до 30 ампер, шесть TIP2955 подключаются параллельно, чтобы удовлетворить эту потребность.Рассеивание в каждом силовом транзисторе составляет одну шестую от общей нагрузки, но все же требуется адекватный отвод тепла. Максимальный ток нагрузки приведет к максимальному рассеиванию, поэтому требуется очень большой радиатор. При выборе радиатора может быть хорошей идеей поискать либо вентилятор, либо радиатор с водяным охлаждением. В случае выхода из строя силовых транзисторов, стабилизатор должен обеспечивать полный ток нагрузки, что приведет к катастрофическим последствиям. Предохранитель на 1 А на выходе регулятора предотвращает защиту.Нагрузка 400 МОм предназначена только для целей тестирования и не должна включаться в окончательную схему. Смоделированная производительность показана ниже:

Расчеты
Эта схема является прекрасным примером законов Кирхгофа по току и напряжению. Подводя итог, можно сказать, что сумма токов, входящих в переход, должна равняться току, выходящему из перехода, а напряжения вокруг контура должны равняться нулю. Например, на диаграмме выше входное напряжение составляет 24 вольт. 4 Вольт падает на R7 и 20 Вольт на входе регулятора, 24-4-20 = 0.На выходе: — общий ток нагрузки 30 ампер, стабилизатор выдает 0,866 А и 6 транзисторов по 4,855 А каждый, 30 = 6 * 4,855 + 0,866. Каждый силовой транзистор дает на нагрузку около 4,86 ​​А. Базовый ток составляет около 138 мА на транзистор. Требуется усиление постоянного тока 35 при токе коллектора 6 А. Это вполне укладывается в рамки TIP2955. Резисторы от R1 до R6 включены для обеспечения стабильности и предотвращения перегрузки по току, поскольку производственные допуски усиления постоянного тока будут разными для каждого транзистора.2) / 200 или около 160 мВт. Я рекомендую использовать резистор на 0,5 Вт для R7. Входной ток к регулятору подается через эмиттерный резистор и переходы база-эмиттер силовых транзисторов. Еще раз, используя законы Кирхгофа, входной ток регулятора 871 мА выводится из базовой цепи, а 40,3 мА протекает через резистор 100 Ом. 871,18 = 40,3 + 830. 88. Ток от самого регулятора не может быть больше входного. Как видно, регулятор потребляет всего около 5 мА и должен работать в холодном состоянии.

Первоначальное тестирование и устранение неисправностей
Для первоначального теста не подключайте нагрузку. Сначала используйте вольтметр на выходных клеммах, вы должны измерить напряжение 12 В или очень близко к нему. Затем подключите резистор на 100 Ом, 3 Вт или другую небольшую нагрузку. Показания вольтметра не должны измениться. Если вы не видите «12 Вольт», выключите питание и проверьте все соединения.

Я слышал от одного читателя, у которого было напряжение 35 Вольт, а не регулируемые 12 Вольт. Это было вызвано коротким замыканием силового транзистора.В случае короткого замыкания на любом из выходных транзисторов все 6 необходимо распаять. С помощью мультиметра проверьте сопротивление и измерьте между клеммами коллектора и эмиттера. Силовые транзисторы обычно выходят из строя при коротком замыкании, поэтому найти неисправный будет несложно.

Готовый проект
Я недавно получил известие от Райана Лауренсианы из Филиппин, который построил себе блок питания 12 В 30 А. Ниже приведены изображения блока питания Ryans.





Загрузки

Блок питания 12 В — 30 А — Ссылка


Accurate LC Meter

Создайте свой собственный точный LC-метр (измеритель индуктивности емкости) и начните создавать свои собственные катушки и индукторы.Этот LC-метр позволяет измерять невероятно малые индуктивности, что делает его идеальным инструментом для изготовления всех типов ВЧ-катушек и индукторов. LC Meter может измерять индуктивность от 10 нГн до 1000 нГн, 1 мкГн — 1000 мкГн, 1 мГн — 100 мГн и емкости от 0,1 пФ до 900 нФ. Схема включает в себя автоматический выбор диапазона, а также переключатель сброса и обеспечивает очень точные и стабильные показания.

PIC Вольт-амперметр

Вольт-амперметр измеряет напряжение 0-70 В или 0-500 В с разрешением 100 мВ и потребляемый ток 0-10 А или более с разрешением 10 мА.Счетчик является идеальным дополнением к любым источникам питания, зарядным устройствам и другим электронным устройствам, в которых необходимо контролировать напряжение и ток. В измерителе используется микроконтроллер PIC16F876A с ЖК-дисплеем с подсветкой 16×2.


Измеритель / счетчик частоты 60 МГц

Измеритель / счетчик частоты измеряет частоту от 10 Гц до 60 МГц с разрешением 10 Гц. Это очень полезное стендовое испытательное оборудование для тестирования и определения частоты различных устройств с неизвестной частотой, таких как генераторы, радиоприемники, передатчики, функциональные генераторы, кристаллы и т. Д.

1 Гц — 2 МГц XR2206 Функциональный генератор

1 Гц — 2 МГц Функциональный генератор XR2206 выдает высококачественные синусоидальные, квадратные и треугольные сигналы высокой стабильности и точности. Формы выходных сигналов могут быть модулированы как по амплитуде, так и по частоте. Выход 1 Гц — 2 МГц Функциональный генератор XR2206 может быть подключен непосредственно к счетчику 60 МГц для настройки точной выходной частоты.


BA1404 HI-FI стерео FM-передатчик

Будьте «в эфире» со своей собственной радиостанцией! BA1404 HI-FI стерео FM-передатчик передает высококачественный стереосигнал в FM-диапазоне 88–108 МГц.Его можно подключить к любому типу стереофонического аудиоисточника, например iPod, компьютеру, ноутбуку, CD-плееру, Walkman, телевизору, спутниковому ресиверу, магнитофонной кассете или другой стереосистеме для передачи стереозвука с превосходной четкостью по всему дому, офису, двору или лагерь.

USB IO Board

USB IO Board — это крошечная эффектная маленькая плата разработки / замена параллельного порта с микроконтроллером PIC18F2455 / PIC18F2550.Плата USB IO совместима с компьютерами Windows / Mac OSX / Linux. При подключении к плате ввода-вывода Windows будет отображаться как COM-порт RS232. Вы можете управлять 16 отдельными выводами ввода-вывода микроконтроллера, отправляя простые последовательные команды. Плата USB IO получает питание от USB-порта и может обеспечить до 500 мА для электронных проектов. Плата USB IO совместима с макетной платой.


ESR Meter / Capacitance / Inductance / Transistor Tester Kit

ESR Meter Kit — удивительный мультиметр, который измеряет значения ESR, емкость (100 пФ — 20000 мкФ), индуктивность, сопротивление (0.1 Ом — 20 МОм), проверяет множество различных типов транзисторов, таких как NPN, PNP, полевые транзисторы, полевые МОП-транзисторы, тиристоры, тиристоры, симисторы и многие типы диодов. Он также анализирует такие характеристики транзистора, как напряжение и коэффициент усиления. Это незаменимый инструмент для поиска и устранения неисправностей и ремонта электронного оборудования путем определения производительности и исправности электролитических конденсаторов. В отличие от других измерителей ESR, которые измеряют только значение ESR, этот измеряет значение ESR конденсатора, а также его емкость одновременно.

Комплект усилителя для наушников для аудиофилов

Комплект усилителя для наушников для аудиофилов включает в себя высококачественные компоненты аудиосистемы, такие как операционный усилитель Burr Brown OPA2134, потенциометр регулировки громкости ALPS, разветвитель шины Ti TLE2426, конденсаторы с FM-фильтрацией Panasonic с ультранизким ESR 220 мкФ / 25 В, Высококачественные входные и развязывающие конденсаторы WIMA и резисторы Vishay Dale. 8-DIP-гнездо для микросхем позволяет заменять OPA2134 на многие другие микросхемы двойных операционных усилителей, такие как OPA2132, OPA2227, OPA2228, двойной OPA132, OPA627 и т. Д.Усилитель для наушников достаточно мал, чтобы поместиться в жестяной коробке Altoids, и благодаря низкому энергопотреблению может питаться от одной батареи на 9 В.


Комплект прототипа Arduino

Прототип Arduino — впечатляющая плата для разработки, полностью совместимая с Arduino Pro. Он совместим с макетной платой, поэтому его можно подключить к макетной плате для быстрого прототипирования, и на обеих сторонах печатной платы имеются выводы питания VCC и GND.Он небольшой, энергоэффективный, но настраиваемый с помощью встроенной перфорированной платы 2 x 7, которую можно использовать для подключения различных датчиков и разъемов. Arduino Prototype использует все стандартные компоненты со сквозными отверстиями для легкой конструкции, два из которых скрыты под разъемом IC. Плата оснащена 28-контактным разъемом DIP IC, заменяемым пользователем микроконтроллером ATmega328 с загрузчиком Arduino, кварцевым резонатором 16 МГц и переключателем сброса. Он имеет 14 цифровых входов / выходов (0-13), 6 из которых могут использоваться как выходы ШИМ и 6 аналоговых входов (A0-A5).Эскизы Arduino загружаются через любой USB-последовательный адаптер, подключенный к 6-контактному гнезду ICSP. Плата питается напряжением 2-5 В и может питаться от аккумулятора, такого как литий-ионный элемент, два элемента AA, внешний источник питания или адаптер питания USB.

4-канальный беспроводной пульт дистанционного управления с частотой 433 МГц, 200 м

Возможность беспроводного управления различными приборами внутри или за пределами вашего дома является огромным удобством и может сделать вашу жизнь намного проще и веселее.Радиочастотный пульт дистанционного управления обеспечивает дальность действия до 200 м / 650 футов и может найти множество применений для управления различными устройствами, и он работает даже через стены. Вы можете управлять освещением, вентиляторами, системой переменного тока, компьютером, принтером, усилителем, роботами, гаражными воротами, системами безопасности, занавесками с электроприводом, моторизованными оконными жалюзи, дверными замками, разбрызгивателями, моторизованными проекционными экранами и всем остальным, о чем вы можете подумать.

Схема источника питания для макетной платы на печатной плате

Блок питания — очень часто используемый инструмент большинством инженеров на этапе разработки.Я лично часто использую его, когда экспериментирую с моими схемами на макетной плате или для включения простого модуля. Большинство цифровых схем или встроенных схем имеют стандартное рабочее напряжение 5 В или 3,3 В, поэтому я решил создать источник питания , который может подавать 5 В / 3,3 В на шины питания макета и плотно прилегает к макету. .

Полный блок питания будет разработан на печатной плате с использованием EasyEDA. В схеме используется 7805 для питания 5 В и LM317 для питания 3.3 В с максимальным номинальным током 1,5 А, что достаточно для источника для цифровых ИС и схем микроконтроллера. Итак, приступим …

Необходимые материалы

  • LM317 Регулятор переменного напряжения
  • 7805
  • Домкрат для цилиндров постоянного тока
  • 330 Ом и резистор 560 Ом
  • Конденсатор 0,1 и 1 мкФ
  • Светодиодная лампа
  • Мужской Bergstik
  • Печатная плата
  • (от JLCPCB)

Принципиальная схема

Полная принципиальная схема для этого проекта источника питания макетной платы показана ниже.Схема была создана с помощью Easy EDA.

Для упрощения понимания схема разделена на четыре части. Верхняя левая и нижняя левая части — это регулятор 5 В и регулятор 3,3 В соответственно. Верхняя правая и нижняя правая часть — это штырьки заголовка, из которых мы можем получить либо 5 В, либо 3,3 В в зависимости от необходимости, изменив положение перемычки .

Для людей, которые плохо знакомы с этикетками, это просто виртуальный провод, который используется в принципиальных схемах для создания более аккуратных и простых для понимания.В приведенной выше схеме названия + 12V, + 5V и + 3.3V являются метками. Любые два места, где написана метка +12 В, фактически соединены проводом, то же самое применимо и к другим двум меткам + 5 В и + 3,3 В.

+ 5V Цепь регулятора

Мы использовали стабилизатор положительного напряжения 7805 для получения регулируемого источника питания + 5В. Вход микросхемы осуществляется от адаптера 12 В, подключенного к цилиндрическому разъему постоянного тока. Для устранения пульсаций мы использовали конденсатор емкостью 1 мкФ во входной секции и 0.Конденсатор 1 мкФ в выходной секции. Стабилизированное выходное напряжение +5 В можно получить для контакта 3. При правильном радиаторе мы можем получить около 1,5 А от микросхемы 7805.

Цепь регулятора + 3,3 В

Аналогично для получения +3,3 В мы использовали стабилизатор напряжения LM317 . LM317 — это регулируемый стабилизатор напряжения, который принимает входное напряжение 12 В и обеспечивает фиксированное выходное напряжение 3,3 В. Выходное напряжение V out зависит от номиналов внешнего резистора R 1 и R 2 согласно следующему уравнению:

Рекомендуемое значение для R1 — 240 Ом, но может быть и другое значение от 100 Ом до 1000 Ом.Мы можем использовать этот онлайн-калькулятор для расчета значений R1 и R2, я установил, что значение R1 равно 330R, а значение выходного напряжения — 3,3 В. После нажатия на кнопку расчета я получил следующий результат.

Поскольку у нас нет резистора на 541,19 Ом, мы использовали ближайшее возможное значение, которое составляет 560 Ом. Мы также добавили светодиод через еще один резистор 560 Ом, который будет работать как индикатор питания.

Размещение штифтов жатки

В двух вышеупомянутых блоках цепей мы отрегулировали + 5В и +3.3 В образуют источник 12 В. Теперь мы должны предоставить пользователю возможность выбирать между напряжением + 5 В или напряжением + 3,3 В в соответствии с требованиями пользователя. Для этого мы использовали штыри с перемычками. Пользователь может переключать перемычку для выбора значений напряжения +5 В и + 3,3 В. . Мы также разместили еще один контакт заголовка в нижней части печатной платы, чтобы мы могли установить его прямо на макетной плате.

Дизайн печатной платы с использованием EasyEDA

Для разработки этого источника питания Breadboard мы выбрали онлайн-инструмент EDA под названием EasyEDA.Раньше я много раз использовал EasyEDA и нашел его очень удобным в использовании, поскольку он имеет хороший набор следов и имеет открытый исходный код. После проектирования печатной платы мы можем заказать образцы печатной платы в их недорогих услугах по изготовлению печатных плат. Они также предлагают услуги по подбору компонентов, если у них есть большой запас электронных компонентов, и пользователи могут заказать необходимые компоненты вместе с заказом печатной платы.

При разработке схем и печатных плат вы также можете сделать общедоступными свои схемы и конструкции печатных плат, чтобы другие пользователи могли их копировать или редактировать и извлекать выгоду из вашей работы. Мы также сделали общедоступными макеты всех схем и печатных плат для этой схемы, проверьте ссылку ниже:

https: // easyeda.com / circuitdigest / макетная-схема-источника питания

Вы можете просмотреть любой слой (верхний, нижний, верхний, нижний, шелковый и т. Д.) Печатной платы, выбрав слой в окне «Слои».

Вы также можете просмотреть печатную плату, как она будет выглядеть после изготовления, используя кнопку Photo View в EasyEDA:

Расчет и заказ образцов онлайн

После завершения проектирования этого блока питания Bread Board PCB, вы можете заказать печатную плату через JLCPCB.com. Чтобы заказать печатную плату в JLCPCB, вам потребуется файл Gerber. Чтобы загрузить файлы Gerber вашей печатной платы, просто нажмите кнопку Generate Fabrication File на странице редактора EasyEDA, затем загрузите файл Gerber оттуда или вы можете щелкнуть Order в JLCPCB , как показано на изображении ниже. Это перенаправит вас на JLCPCB.com, где вы можете выбрать количество плат, которые вы хотите заказать, сколько слоев меди вам нужно, толщину печатной платы, вес меди и даже цвет печатной платы, как на снимке, показанном ниже:

После того, как вы выбрали все параметры, нажмите «Сохранить в корзину», после чего вы попадете на страницу, где вы можете загрузить свой файл Gerber, который мы загрузили с EasyEDA.Загрузите свой файл Gerber и нажмите «Сохранить в корзину». И, наконец, нажмите «Оформить заказ», чтобы завершить заказ, и через несколько дней вы получите свои печатные платы. Они производят печатную плату по очень низкой цене — 2 доллара. Их время сборки также очень мало, что составляет 48 часов с доставкой DHL 3-5 дней, в основном вы получите свои печатные платы в течение недели с момента заказа.

После заказа печатной платы вы можете проверить Production Progress вашей печатной платы с указанием даты и времени.Вы можете проверить это, перейдя на страницу учетной записи и щелкнув ссылку «Production Progress» под печатной платой, как показано на изображении ниже.

После нескольких дней заказа печатных плат я получил образцы печатных плат в красивой упаковке, как показано на рисунках ниже.

И после того, как достал эти детали, я припаял все необходимые компоненты поверх печатной платы.

Работа цепи питания макета

После сборки вашей печатной платы убедитесь, что нет холодной пайки, и удалите весь лишний флюс с вашей платы.Закрепите плату поверх макета, и она должна плотно прилегать между обеими шинами питания макета, теперь используйте адаптер 12 В для питания вашей платы через разъем постоянного тока, и вы должны увидеть, как загорится светодиод питания (здесь белый цвет). Затем вы можете установить перемычку либо на сторону 5 В, либо на сторону 3,3 В, используя информацию шелкографии. Убедитесь, что вы используете перемычки, иначе на выходной стороне не будет напряжения.

На изображении выше я установил перемычку для обеспечения + 5В и измерил то же самое с помощью мультиметра, который также показывает 4.97V, что достаточно близко. Аналогичным образом можно проверить и 3,3 В. Полная работа и тестирование проекта также показаны на видео ниже .

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *