Схемы самодельные импульсные блоки питания: Самодельный импульсный блок питания 12В 400Вт на IR2153

Содержание

Самодельный импульсный блок питания 12В 400Вт на IR2153

Иногда в нашей практике бывает необходим довольно мощный нестабилизированный источник постоянного напряжения. От такого источника можно запитать например подогреваемый столик 3D принтера, батарейный шуруповерт или даже мощный усилитель НЧ класса D (в этом случае ИБП стоит оборудовать дополнительным фильтром для уменьшения высокочастотных помех). В случае изготовления источника питания, рассчитанного на мощности 200 — 500 вт дешевле пойти по пути изготовления импульсного источника, так как сетевой трансформатор 50 Гц на такую мощность будет довольно дорог и очень тяжел.

Проще всего такой источник питания собрать по полумостовой схеме на основе драйвера IR2153. Эта микросхема обычно используется в качественных драйверах (электронных балластах) люминесцентных ламп.

Принципиальная схема импульсного блока питания на IR2153

Сетевое напряжение 220В поступает на выпрямитель (диодный мост) через сетевой фильтр на элементах C1, C2, C3, C4, L1. Этот фильтр предотвращает проникновение высокочастотных помех от блока питания в электросеть. Термистор на входе устройства уменьшает бросок тока через диодный мост в момент включения блока питания в сеть, когда происходит заряд конденсаторов C5 и C6.

Катушку сетевого фильтра L1, термистор и конденсаторы C5 и C6 можно извлечь из старого компьютерного блока питания. импульсный силовой трансформатор Т1 придется намотать самостоятельно. Сердечник трансформатора берем также из старого компьютерного блока. Нужно разобрать трансформатор. Для этот помещаем трансформатор в емкость с водой (банку, кастрюльку) так, чтобы он был полностью погружен в жидкость. Ставим ескость на плиту и кипятим примерно полчаса. После этого сливаем воду, извлекаем трансформатор и пока он горячий, пытаемся аккуратно разобрать сердечник. Сматываем с каркаса все заводские обмотки и наматываем новые. Первичная обмотка содержит 40 витков провода диаметром 0.8мм. Вторичная обмотка содержит 2 части по 3 витка и намотана «косой» из 7 проводов того же провода диаметром 0.8мм.

Импульсный трансформатор от компьютерного блока питания

Резистор R2 в цепи питания микросхемы должен быть мощностью не менее 2 W и в процессе работы он будет слегка нагреваться. Это нормально. Диодный мост выпрямителя сетевого напряжения можно составить из четырех диодов 1N5408 (3А 1000В). Транзисторы IRF840 нужно установить на радиатор через изолирующие прокладки. желательно установить в корпусе блока питания небольшой вентилятор для охлаждения этих транзисторов и других элементов схемы.

Первое включение блока питания в сеть нужно производить через лампу накаливания мощностью 100вт, включенную последовательно с предохранителем FU1. В момент включения в сель лампа может вспыхнуть, затем она должна погаснуть. Если лампа светится постоянно, это означает что с блоком проблемы — короткое замыкание в монтаже или неисправность компонентом. В этом случае включать блок в сеть напрямую без лампы накаливания нельзя. Нужно найти причину неисправности.

ИМПУЛЬСНЫЙ БП СВОИМИ РУКАМИ


   На основе готового импульсного трансформатора от компьютерного блока питания можно соорудить мощный самодельный БП на 200 ватт. Схема достаточно проста и в наладке не нуждается. Основа самотактируемый полумостовой драйвер выполненный на микросхеме IR2151.

   Сигнал генератора усиливается каскадом на мощных полевых транзисторах, транзисторы нужно укрепить на теплоотвод. Термистор любой, его можно найти в тех же компьютерных блоках питания. Резистор 47 килоом подобрать с мощностью в несколько ватт. Диод FR107 можно заменить на аналогичный импульсный диод, например на FR207 и т.п. Электролитические конденсаторы использованы для сглаживании пульсаций и подавления сетевых помех, их емкость должна быть от 22 до 470 мкф с напряжением не ниже 200 вольт. Предохранитель можно поставить на 3 ампера. Импульсный трансформатор позволяет получить двухполярное напряжение 12 или 2 вольт, следовательно на выходе при желании можно получить 5 вольт, 10 вольт, 12вольт или 24 вольта. 

   Таким блоком питания можно питать достаточно мощные усилители низкой частоты или же приспособить блок под обыкновенный 12 вольтовый усилитель из серии TDA. Кроме этого блок питания можно дополнить регулятором напряжения и использовать в качестве импульсного лабораторного блока питания. 

   В качестве выпрямителей можно использовать быстрые или ультрабыстрые диоды на 4-10 ампер, отлично подходят диодные сборки из компьютерных блоков питания, там обычно ставят диоды шоттки с током до 20 ампер, диоды тоже желательно укрепить на теплоотвод, но только в том случае, если блок питания предназначен для работы на нагрузку от 100 ватт. Данный блок питания можно использовать как зарядное устройство для автомобильного аккумулятора, поскольку выходной ток более 10 ампер!


Поделитесь полезными схемами

ВОДОНАГРЕВАТЕЛЬ СОЛНЕЧНЫЙ

   Использование солнечных водонагревателей. Возможности использования экологически чистой повсеместно доступной возобновляемой энергии солнечного излучения привлекают все большее внимание. В среднем по году, в зависимости от климатических условий и широты местности, поток солнечного излучения на земную поверхность составляет от 100 до 250 Вт/м2, достигая пиковых значений в полдень при ясном небе, практически в любом независимо от широты месте, около 1 000 Вт/м2.


АВТОМОБИЛЬНЫЙ МОНОБЛОК ДЛЯ САБВУФЕРА

    Изучая схемотехнику автомобильных усилителей мощности, наткнулся на очень интересный моноблок предназначенный для питания автомобильного сабвуфера.


ДЕСЯТИЧНО-ДВОИЧНЫЙ ДЕШИФРАТОР

   Десятично-двоичный дешифратор в электронике. В вычислительной технике применяется двоичная система счисления. В системе применены все действия, подобные действиям десятичной системы (сложение, вычитание, умножение и т. д.). При работе вычислительной техники возникает необходимость перевода десятичных чисел в двоичные и обратно. Перевод может быть математическим.




Мощный импульсный блок питания на 12 В своими руками

Доброго времени суток дорогие друзья, в этой статье хочу поделиться с вами своим опытом по созданию импульсных источников питания. Речь пойдет о том как собрать своими руками импульсный источник питания на микросхеме IR2153.
Микросхема IR2153 представляет собой высоковольтный драйвер затвора, на ней строят много различных схем, блоки питания, зарядные устройства и т. д. Напряжение питания варьируется от 10 до 20 вольт, рабочий ток 5 мА и рабочую температуру до 125 градусов Цельсия.
Начинающие радиолюбители побаиваются собрать свой первый импульсный блок питания, очень часто прибегают к трансформаторным блокам. Я в свое время тоже опасался, но все таки собрался и решил попробовать, тем более что деталей было достаточно для его сборки. Теперь поговорим не много о схеме. Это стандартный полумостовой источник питания с IR2153 на борту.

Детали


Диодный мост на входе 1n4007 или готовая диодная сборка рассчитанная на ток не менее 1 А и обратным напряжением 1000 В.
Резистор R1 не менее двух ватт можно и 5 Ватт 24 кОм, резистор R2 R3 R4 мощностью 0,25 Ватт.
Конденсатор электролитический по высокой стороне 400 вольт 47 мкф.
Выходной 35 вольт 470 – 1000 мкФ. Конденсаторы фильтра пленочные рассчитанные на напряжение не менее 250 В 0,1 — 0,33 мкФ. Конденсатор С5 – 1 нФ. Керамический, конденсатор С6 керамический 220 нФ, С7 пленочный 220 нФ 400 В. Транзистор VT1 VT2 N IRF840, трансформатор от старого блока питания компьютера, диодный мост на выходе полноценный из четырех ультрабыстрых диодах HER308 либо другие аналогичные.
В архиве можно скачать схему и плату:


Печатная плата изготовлена на куске фольгированного одностороннего стеклотекстолита методом ЛУТ. Для удобства подключения питания и подключения выходного напряжения на плате стоят винтовые клемники.


Схема импульсного блока питания на 12 В


Преимущество этой схемы в том, что эта схема очень популярная в своем роде и ее повторяют многие радиолюбители в качестве своего первого импульсного источника питания и КПД а разы больше не говоря уже и размерах. Схема питается от сетевого напряжения 220 вольт по входу стоит фильтр который состоит из дросселя и двух пленочных конденсаторов рассчитанных на напряжение не менее 250 – 300 Вольт емкостью от 0,1 до 0,33 мкФ их можно взять из компьютерного блока питания.

В моем случае фильтра нет, но поставить желательно. Далее напряжение поступает на диодный мост рассчитанный на обратное напряжение не менее 400 Вольт и током не менее 1 Ампера. Можно и поставить готовую диодную сборку. Дальше по схеме стоит сглаживающий конденсатор с рабочим напряжением 400 В, поскольку амплитудное значение сетевого напряжение составляет в районе 300 В. Емкость данного конденсатора подбирается следующим образом, 1 мкФ на 1 Ватт мощности, так как я не собираюсь выкачивать из этого блока большие токи, то в моем случае стоит конденсатор на 47 мкФ, хотя из такой схемы можно и выкачивать сотни ватт. Питание микросхемы берется с переменки, здесь организован источник питания резистор R1 который обеспечивает гашение тока, желательно ставить помощнее не менее двух ватт так как осуществляется его нагрев, затем напряжение выпрямляется всего одним диодом и поступает на сглаживающий конденсатор а затем на микросхему. 1 вывод микросхемы плюс питания и 4 вывод это минус питания.

Можно и собрать отдельный источник питания для нее и подать согласно полярности 15 В. В нашем случае микросхема работает на частоте 47 – 48 кГц для такой частоты организована RC цепочка состоящая из резистора R2 15 ком и пленочного или керамического конденсатора на 1 нФ. При таком раскладе деталей микросхема будет работать правильно и вырабатывать прямоугольные импульсы на своих выходах которые поступают на затворы мощных полевых ключей через резисторы R3 R4 номиналы их могут отклоняться в пределах от 10 до 40 Ом. Транзисторы необходимо ставить N канальные, в моем случае стоят IRF840 с рабочим напряжением сток исток 500 В и максимальным током стока при температуре 25 градусов 8 А и максимальной рассеиваемой мощностью 125 Ватт. Далее по схеме стоит импульсный трансформатор, после него идет полноценный выпрямитель из четырех диодов марки HER308, обычные диоды тут не подойдут так как они не смогут работать на высоких частотах, поэтому ставим ультрабыстрые диоды и после моста напряжение уже поступает на выходной конденсатор 35 Вольт 1000 мкФ, можно и 470 мкФ особо больших емкостей в импульсных блоках питания не требуется.

Вернемся к трансформатору, его можно найти на платах компьютерных блоков питания, определить тут его не сложно на фото видно самый большой вот он то нам и нужен. Чтобы перемотать такой трансформатор необходимо прослабить клей, которым склеены половинки феррита, для этого берем паяльник или паяльный фен и потихоньку прогреваем трансформатор, можно опустить в кипяток на несколько минут и аккуратно разъединяем половинки сердечника. Сматываем все базовые обмотки, наматывать будем свои. Из расчета того что мне на выходе нужно получить напряжение в районе 12-14 Вольт, первичная обмотка трансформатора содержит 47 витков проводом 0,6 мм в две жилы, делаем изоляцию между намоткой обычным скотчем, вторичная обмотка содержит 4 витка того же провода в 7 жил. ВАЖНО производить намотку в одну сторону, каждый слой изолировать скотчем, отмечая начало и конец обмоток иначе ни чего работать не будет, а если и будет тогда блок не сможет отдать всю мощность.

Проверка блока


Ну а теперь давайте протестируем наш блок питания так как мой вариант полностью исправен то я сразу подключаю в сеть без страховочной лампы.
Проверим выходное напряжение как видим оно в районе 12 – 13 В не много гуляет от перепадов напряжения в сети.

В качестве нагрузки автомобильная лампа на 12 В мощностью 50 Ватт ток соответственно протекает 4 А. Если такой блок дополнить регулировкой тока и напряжения, поставить входной электролит большей емкости, то можно смело собирать зарядное устройство для авто и лабораторный блок питания.

Перед запуском блока питания необходимо проверить весь монтаж и включаем в сеть через страховочную лампу накаливания 100 Ватт, если Лампа горит в полный накал значит ищите ошибки при монтаже сопли не смытый флюс либо не исправен какой то компонент и т д. При правильной сборке лампа должна слегка вспыхнуть и погаснуть, это нам говорит, что Конденсатор по входу зарядился и ошибок в монтаже нет. Поэтому перед установкой компонентов на плату их необходимо проверять даже если они новые. Еще один не мало важный момент после запуска напряжение на микросхеме между 1 и 4 выводом должно быть не менее 15 В. Если это не так подбирать нужно номинал резистора R2.

Смотрите видео


cxema.org — Мощный импульсный блок питания

В радиолюбительской практике многие самодельные конструкции остаются на полках без внимания по той причине, что не имеют блока питания. Одна из самых повторяемых конструкций — усилитель мощности низкой частоты, которому тоже нужен источник питания. Сетевые трансформаторы для запитки мощных усилителей стоят немало денег, да и размеры и вес иногда некстати. По этому в последнее время широкое применение нашли импульсные блоки питания. Эти блоки имеют полностью электронную начинку и работают в импульсном режиме. За счет повышенной рабочей частоте удается резким образом уменьшить размеры и вес источника питания. Схема такого блока питания была найдена в одном из зарубежных сайтов, недолго думая, решил повторить конструкцию.

Конструкция отличается особой простотой и дешевизной, в моем случае было потрачено всего 5$ на транзисторы и микросхему, все остальное можно найти в нерабочем компьютерном блоке питания.

Мощность такого блока может доходить до 400 ватт, для этого нужно только поменять диодный выпрямитель и электролиты, вместо 220 мкФ, поставить на 470.

Термистор — любой, он сохранит транзисторы во время броска напряжения при подачи питания. Имеется также сетевой фильтр, который состоит из дросселя и пленочных конденсаторов, в какой-то мере сглаживает сетевые помехи и пульсации.

Выпрямитель можно взять готовый, от компьютерного БП или собрать мост из диодов с током 3 А и более, обратное напряжение диодов не менее 400Вольт.

Полевые ключи — в моем случае использовались мощные силовые транзисторы IRF740 с рабочим напряжением 400 Вольт при токе 10 Ампер.

Ключи установлены на общий теплоотвод, но изолированы от него во избежания коротких замыканий. Выбор транзисторов не критичен, в ходе работы они у меня остаются холодными даже с выходной нагрузкой 50 ватт (при этом транзисторы без теплоотводов).

Трансформатор — выпаян из блока питания АТХ.

Сердцем блока питания является драйвер IR2153, она же и является задающим генератором. Драйвер достаточно мощный и номинал выходного сигнало достаточен для управления полевыми ключами. В случае использования микросхем в обычном DIP корпусе, нужен ультрабыстрый или быстрый диод, подключенный в прямом направлении от 1 к 8 выводу.

Собранная схема заработает сразу, если с монтажом ничего не перепутали. Ограничительный резистор 47 к для питания микросхемы нужен с мощностью 1-2 ватт, в моем случае нужного резистора не нашлось, поэтому использовал два резистора, суммарное сопротивление которых 47к. Этот резистор в ходе работы может чуть перегреться, но это не страшно и вполне нормально.

На выходе трансформатора можно использовать импульсные или быстрые диоды, можно также ставить диодные сборки Шоттки из компьютерных БП, как право, они рассчитаны на большие токи. Можно применять также отечественные диоды серии КД213А, которые могут работать на частотах до 100кГц, а максимальный допустимый ток доходит до 10Ампер.

Первый запуск схемы нужно проводить с последовательно подключенной лампой накаливания на 220 Вольт 100 — 150 ватт, чтобы при неправильном монтаже схема не взорвалась.

ЧТО СДЕЛАТЬ, ЕСЛИ СХЕМА НЕ ЗАРАБОТАЛА? (несколько советов)

Если схема при первом включении не заработала, то в первую очередь проверьте в лишний раз монтаж, а вначале работ тщательно проверяйте компоненты на исправность.

На выход трансформатора подключите галогенную лампу на 20 ватт, которая будет играть в роль контрольной лампочки. Если при включении лампа начнет мигать, а схема будет издавать свист, то скорее всего не хватает напряжения для питания микросхемы. В таком случае нужно понизить номинал резистора 47к до 45, если не поможет, то до 40килоом и так до тех пор, пока не нормализуется работа генератора.

Нормально настроенная и рабочая схема не должна издавать слышимых звуков, транзисторы без выходной нагрузки должны быть холодными, на каждом конденсаторе должно быть 150 160 вольт постоянного тока. Если один из конденсаторов греется, то проверьте мост, скорее всего имеется неисправный диод и на конденсатор поступает переменный ток. После устранения неполадок замените конденсатор и включите схему.

Такой блок питания можно использовать в качестве лабораторного блока питания, или зарядного устройства для мощных кислотных аккумуляторов автомобиля, мы лишь представили вариант сборки, а где применить — ваша фантазия. Оставайтесь с нами, станьте подписчиком нашей группы ВК и будьте в курсе о новых обновлениях.

Плата в формате Sprint-layout

С уважением — АКА КАСЬЯН

Схемы блоков питания | 2 Схемы

Схемы самодельных блоков питания на различные напряжения и ток — простые БП для начинающих и мощные двухканальные регулируемые лабораторные источники питания со всеми защитами.

Лабораторный блок питания PS-1503D — это практически самый дешевый регулируемый китайский блок питания из представленных на Али. Технические данные лабораторного источника питания постоянного тока: модель: …

Представляем обзор простого блока питания в стиле «сделай сам» на основе готовых электронных модулей, заказанных у китайских друзей. Такой подход здорово экономит время и деньги, …

Всем привет, вот ещё одна интересная схемка — простой симметричный источник питания. Это не полноценный лабораторный источник питания, так что не нужно слишком много от …

Хочу поделиться схемой универсального лабораторного блока питания 0-22 В, 0-2,5 А. БП имеет полностью цифровой контроль. Устройство работает безупречно уже третий год, только внес изменения …

Попробовал недавно собрать схему мощного лабораторного блока питания 0-30 В с защитой 0-10 А, работает нормально. Принципиальная схема, печатная плата и файлы в общем архиве. …

В этой статье представим два самых простых регулируемых блока питания на базе популярных микросхем LM317 и LM337. Конструкции были сделаны из дешевых и легкодоступных деталей. …

Этот мощный самодельный блок питания состоит из двух отдельных модулей: управляющей части со стабилизатором и инвертора. В данной конструкции блока питания отсутствует силовой трансформатор (как …

Проект этого очень мощного импульсного источника питания давно ждал своего времени и наконец был воплощен в железе, потому что потребовался регулируемый лабораторный ИП повышенной мощности. …

Разрешите представить на суд уважаемых радиолюбителей и читателей сайта 2Схемы довольно необычный лабораторный источник питания с регулировками напряжения 0 — 20 В и током защиты …

Блок питания — комплект для самостоятельной сборки из одного зарубежного радиоконструктора, только тут трансформатор 2x 9 В 2,5 A, соответственно снижен в 2 раза предел …

Предпосылкой к проекту было создать простой и дешевый преобразователь напряжения. Постоянное напряжение 12 В при выходном переменном значении около 220 В и нагрузочной способности до …

Радиопередатчик, которым по долгу службы иногда пользуюсь, имеет напряжение 12 В, поэтому блок питания к нему требуется достаточной мощности. Купить готовый можно, но это же …

Разрешите представить на суд читателей сайта 2Схемы универсальный источник питания для радиомастерской, изготовленный из блока питания ATX с контроллером TL494. БП был создан быстро из …

Источник питания для некоторых планшетов, например Asus Eee, имеет нестандартное напряжение 9,5 В, 2,3 А. На рынке нет стабилизатора для этого напряжения, поэтому схема должна …

Понижающий преобразователь постоянного напряжения на TL494 представляет собой типичный ШИМ-контроллер и силовые транзисторы IRFZ44N. Катушка 40 мкГн участвует в преобразовании входного напряжения 12 Вольт в …

Очередная полезная покупка с сайта AliExpress — электронная нагрузка с тестером емкости аккумуляторов, хотя производитель дал модулю другое название: «тестер разрядки аккумулятора». Куплено было устройство …

Нужен мощный БП на ток более 10 Ампер? Вот одна из самых простых схем источников питания, которую можно собрать предварительно протестировав и отрегулировав. Исходные предположения …

Это обзор китайского блока питания на 2,5 А, где есть плавная регулировка напряжения в диапазоне 3-24 В. Существуют и другие версии этого блока питания, например: …

Трудно назвать проект полностью самодельным, если всего-то надо спаять между собой несколько готовых модулей, но для начинающих радиолюбителей такой подход будет вполне оправдан, поэтому редакция …

Данное электронное устройство предназначено для преобразования низкого постоянного напряжения в диапазоне 8-32 В в более высокое постоянное напряжение на выходе (до 410 В) [1-2]. Устройство …

САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ НА ГОТОВЫХ МОДУЛЯХ

Всем привет. У всех, кто занимается электроникой, должен быть лабораторный блок питания. Если паять неохота или вы начинающий радиолюбитель — эта статья специально для вас написана. Сразу поговорим про характеристики блока питания и его отличие от популярных разновидностей БП на LM317 или LM338.

Модули для БП

Мы будем собирать импульсный блок питания, но паять ничего не будем, просто купим у китайцев уже спаянный модуль регулировки напряжения с ограничением тока, такой модуль может отдать 30 вольт 5 ампер. Согласитесь, что не каждый аналоговый БП на такое способен, да и какие потери в виде тепла, так как транзистор или микросхема лишнее напряжение берет на себя. О конкретном типе модуля и его схеме не пишу — они всякие бывают.

Теперь индикация — здесь мы тоже ничего изобретать не будем, возьмем готовый модуль индикации, как и с модулем управления напряжением.

Чем буде все это питать от сети 220 В — читаем дальше. Здесь есть два пути.

  1. Первый — искать готовый трансформатор или намотать свой.
  2. Второй — это взять импульсный БП на нужное напряжение и ток, или доработать под нужные характеристики.

И да, забыл сказать, что подать на модуль управления максимально без последствий можно 32 вольта, но лучше 30 вольт 5 ампер, с током нужно быть аккуратнее тоже, так как схема управления терпит 5 ампер, но не более, но отдаёт все что есть на трансформаторе потому и легко сгорает.

Сборка БП

Сам процесс сборки ещё занятнее дело. Давайте расскажу как у меня предстают дела с комплектующими.

  • Блок питания импульсный от ноутбука 19 вольт 3.5 ампер.
  • Модуль управления.
  • Модуль индикации.

Вот и все, да-да я ничего не забыл дописать, но наверное ещё нам нужен какой-то старый корпус. У меня от советской автомагнитолы пошёл в дело, также пойдет и любой другой, но отдельно хочу похвалить корпус от DVD привода ПК.

Собираем наш будущий блок питания, прежде чем прикрепить плати к корпусу, нужно их изолировать, я дал подложку из толстой пленки и тогда все платы можно прикрепить на двухсторонний скотч.

Но когда дело дошло к переменным резисторам для регулировки напряжения и ограничения тока я понял, что у меня их нет, ну не то что вообще нет — нужного номинала нет, а именно 10 К. Но на плате они есть, и я поступил следующим образом: нашёл два переменника спаленных (чтоб не жалко было), изъял ручки и думал их припаять к переменникам, что были на плате, почему были — я их выпаял, и залудил винт.

Но ничего не вышло, отцентрировать смог лишь когда через термоусадку сделал вот эту ерунду. Но она работала, меня устраивает, а как долго она будет работать — узнаем.

По желанию можно покрасить корпус, у меня это не очень хорошо получилось, но лучше чем просто металл.

В результате у нас получился очень компактный легкий лабораторный блок питания, обладающий защитой от короткого замыкания, ограничением тока, и разумеется, регулировкой напряжения. И все это делается очень плавно благодаря многооборотным резисторам, которые были выпаяны из платы управления. Регулировка напряжения оказалась от 0.8 вольт до 20. Ограничение тока от 20 мА до 4 А. Всем удачи, с вами был Kalyan.Super.Bos

   Форум по БП

   Форум по обсуждению материала САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ НА ГОТОВЫХ МОДУЛЯХ

ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ

   Решил собрать себе в гараж усилитель звуковой частоты, ватт на 60, чтоб читал музыку с флешки. Для этого приобрел китайский ФМ модулятор, а корпус у меня для данного девайса лежал уже давно. Когда собрал усилитель, возникла проблема — обычный сетевой трансформатор на такую мощность в корпус просто не влез. Было решено сделать импульсный блок питания. Пересмотрел кучу схем из интернета. Автогенераторные не подходили, так как дают сильные помехи. Переделка блоков питания от компьютера тоже не понравилась, очень не люблю когда на плате все паяно перепаяно. Тут проще сделать новое. И вот нашел эту интересную схемку импульсного блока питания. 

   Схема проще некуда — работает на частоте 100кгц и содержит минимум недорогих, распространённых деталей. Частота задается резистором, который висит на второй ноге микросхемы (в данном случае 10кОм). Микросхема IR2151-2153 — это драйвер управления затворами полевых транзисторов. Практика показала, что снабберы для подавления ВЧ грязи в данном блоке не обязательны. Даная схема ИБП может вытянуть до 500 ватт мощности. Здесь по описанию автора работают и самодельные трансформаторы. Эта простая проверенная схема прекрасно подойдет для питания усилителей, зарядки аккумуляторов, галогенных ламп на 12 вольт в точечных светильниках и многого другого. 

   Схема не требует никакого налаживания и начинает работать сразу. В своём варианте использовал трансформатор из неисправного блока питания копьютера и все детали кроме микросхемы, транзисторов и мощного резистора на 47 кОм взял оттуда же. На схеме на выпрямлении сетевого напряжения стоит диодный мост — тоже использовал диоды из блока АТХ (плата рассчитана под мост). Входные высоковольтные конденсаторы рассчитывают из соображения 1Мкф ёмкости на 1 Ватт мощности. В данном случае конденсаторы рассчитаны на мощность 220 Ватт. Можно для регулирования частоты последовательно с резистором на 10 кОм поставить переменный на 5кОм. Ведь при изменении частоты изменяется выходное напряжение. Еще хочу добавить, что диоды типа КД213 тут не работают — очень сильно греются, надо ставить что-то по быстрее. Вот фото моего варианта. Диодный мостик на выходе не ставил, так как он стоит отдельно вместе с конденсаторами фильтра в самом усилителе. Транзисторы применил IRF840, так как они больше всего подходят для этого блока питания.

   На фото он тянет 50-ти ваттную нагрузку, диод включил для снижения напряжения, так как на выходе 22 вольта. Печатную плату делал маркером, ушло на минут 10. Транзисторы крепятся на общем радиаторе через слюдяные прокладки. 

   В архиве дана печатная плата на схему. Еще добавлю, что по стоимости радиокомпонентов обошлось всё в три доллара. Автор статьи: Ксюня.

Originally posted 2019-01-27 07:25:54. Republished by Blog Post Promoter

16 способов создания импульсного источника питания

Загрузите эту статью в формате PDF.

Проще говоря, проектирование источника питания — серьезная задача. После принятия решения о сборке или покупке вы сталкиваетесь с множеством вариантов схем — больше, чем вы, вероятно, думаете. Раньше создание источника питания было относительно простым, но с преобладанием методов переключения режимов в наши дни, это стало сложной специальностью. Если вы не являетесь экспертом по источникам питания и / или это одна из ваших первых разработок, вам может потребоваться некоторое руководство.Информация, представленная здесь, должна помочь вам определить ваши варианты и сосредоточиться на одном из них.

Шаг 1. Хорошая спецификация

Все начинается с хорошей спецификации. Очень важно найти время, чтобы изучить свои потребности и написать подробную спецификацию. В качестве отправной точки перечислите следующие ключевые особенности:

  • Диапазон входного напряжения (переменного или постоянного тока)
  • Выходные напряжения (постоянного или переменного тока) и допуски
  • Требования к выходному току
  • Пульсация максимальная
  • Расчетная общая необходимая мощность
  • Требования к эффективности, если есть
  • Соображения по поводу электромагнитных помех (EMI), если таковые имеются

Шаг 2: Первое решение

С этими характеристиками вы сможете сделать свой первый большой выбор: линейный или линейный.Импульсный дизайн. Да, линейные источники питания все еще возможны даже в нынешней доминирующей среде с коммутационным режимом. Если ваша конструкция допускает более низкую эффективность линейного источника питания, вы можете оценить ее преимущества. Основными преимуществами линейного источника питания являются простота конструкции, низкая стоимость, большое количество соответствующих компонентов, проверенные методы и низкие выбросы электромагнитных помех.

С другой стороны, конструкции с импульсным режимом по своей природе являются шумными, и цепи, которые вы запитываете, могут быть восприимчивы к этому шуму.Например, для генератора, синхросигнала, синтезатора или другой критической схемы может потребоваться низкий фазовый шум или джиттер. Линейный источник питания с регулятором с малым падением напряжения (LDO) обеспечит чистый постоянный ток для удовлетворения этой потребности. По крайней мере, имейте в виду линейный вариант, так как он все равно может быть вашим лучшим выбором для некоторых дизайнов.

Большинство новых разработок относятся к числу переключаемых. Преимущества импульсного источника питания (SMPS) слишком велики, чтобы их игнорировать. Эффективность является основным преимуществом, при этом для многих конструкций КПД превышает 90%.Другими преимуществами являются небольшой размер и разумная стоимость. Обратной стороной является сложный и хитрый дизайн с множеством альтернативных подходов. Однако вы можете сделать более осознанный выбор дизайна, если расширите свой список спецификаций.

Шаг 3: Расширенные спецификации

В дополнение к базовым спецификациям, собранным ранее, они также должны быть определены для вашего проекта:

  • Требования к гальванической развязке между входом и выходом
  • Диапазон рабочих температур
  • Ожидаемый пусковой ток
  • Пиковый и средний выходной ток
  • Временное воздействие и потребности в ответных действиях
  • Требования к регулированию нагрузки и линии
  • Частота переключения
  • В дополнение к требованиям EMI, включает необходимость коррекции коэффициента мощности (PFC), Underwriters Laboratories (UL) или другие сертификаты

Шаг 4. Выбор топологии

% {[data-embed-type = «image» data-embed-id = «5df275f3f6d5f267ee213117» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Www Electronicdesign Com Сайты Electronicdesign com Файлы 0717 Ti Power Topology Рис «data-embed-src =» https: // img.electronicdesign.com/files/base/ebm/electronicdesign/image/2017/06/www_electronicdesign_com_sites_electronicdesign.com_files_0717TI_PowerTopology_Fig.png?auto=format&fit=max&w=1440% «data-embed-caption

=» »

Самыми популярными топологиями DC-DC SMPS являются понижающая (a), повышающая (b), инвертирующая понижающая-повышающая (c), SEPIC (d) и Zeta (e). MOSFET выполняет переключение, катушки индуктивности и конденсаторы накапливают энергию, а диод контролирует направление тока.

Возможно, вы уже знаете, что доступно несколько различных схем переключения режимов.Но знаете ли вы, что на самом деле существует 16 топологий, о которых вам следует знать? Один из них наверняка подойдет вам:

  • Бак
  • Синхронный бак
  • Повышение
  • Инвертирующий понижающий-повышающий
  • СЕПИК
  • Cuk
  • Zeta
  • Мухобойка
  • Обратный ход
  • Обратный ход с двумя переключателями
  • Актив-прижим передний
  • Однопереключатель передний
  • Двухпозиционный передний
  • Полумост
  • Полный мост
  • Полный мост со сдвигом фазы

Недостаток места мешает полному охвату.Однако есть два отличных источника, которые вы можете изучить, чтобы оценить свой выбор топологии:

    Краткое руководство по топологиям электропитания
  • : Эти девять страниц содержат краткий обзор наиболее распространенных топологий импульсных источников питания. Он заполнен соответствующими формами сигналов и уравнениями.
  • Более подробную информацию можно найти в 200-страничном Руководстве по топологиям питания. Пояснения к схемам и рекомендации по проектированию основаны на требованиях.

Шаг 5. Начните свой дизайн

Типичный подход — сузить выбор топологии перед принятием окончательного решения.Самыми популярными топологиями являются понижающая, повышающая, понижательно-повышающая (и инвертирующая версия), SEPIC и Zeta. На рисунке 1 показаны упрощенные схемы для каждого из них. В понижающем формате входное напряжение понижается, а при повышении — повышается. Остальные трое могут сделать то же самое. Топология Cuk хороша, если вам нужно изменить полярность выхода.

Если вам нужна изоляция, можно использовать трансформаторы. Топологии, которые будут включать их в конструкцию, включают обратный ход, прямой зажим, двухтактный, полумост или полный мост.

Что касается частоты коммутации, она обычно сводится к наилучшей оценке, основанной на вашем приложении. Сегодня типичные частоты переключения находятся в диапазоне от примерно 100 кГц до нескольких мегагерц. Низкие частоты обычно лучше подходят для приложений с более высокой мощностью, требующих максимальной эффективности. Более высокие частоты упрощают фильтрацию с меньшими конденсаторами и катушками индуктивности и могут привести к уменьшению как размера, так и стоимости.

Также не забудьте принять во внимание влияние основной гармоники и гармоник на другое оборудование поблизости.Одно из возможных решений для ограничения электромагнитных помех переключения — дизеринг. Это включает случайное изменение частоты переключения для уменьшения любых EMI за счет расширения спектра в более широком диапазоне.

Импульсный источник питания

может оказаться загадочным делом, если вы не знаете, как и с чего начать. Прочтите этот рекомендуемый блог, чтобы лучше понять, как выбрать наиболее подходящую топологию источника питания для вашего приложения.

Шаг 6: Другие ресурсы

Диоды и интегральные схемы лежат в основе вашего дизайна.Имейте в виду, что большинство компаний, производящих полупроводники, имеют продукты или услуги поддержки, такие как программное обеспечение для онлайн-проектирования, такое как WEBENCH от Texas Instruments. Не забывайте о возможности использования эталонных дизайнов и оценочных комплектов, чтобы еще больше ускорить и упростить разработку.

Многие идеи принципиальной схемы двойного источника питания 12 В и 5 В при максимальном токе 3 А

См. Различные концепции принципиальной схемы источника питания 12 В и 5 В. Эта схема может когда-либо вызвать у вас головную боль, потому что недоступна или не соответствует работе.

Но эта статья поможет вам сэкономить. Кроме того, это отличное обучение. Самостоятельно создать схему.
Все цепи регулятора постоянного напряжения. Так что им можно доверять, низкий уровень шума.

Как выбрать подходящую концепцию дизайна

Мы должны ответить себе: для чего построена эта схема?

  • 5 вольт
    Когда ваша нагрузка представляет собой цифровую схему семейства TTL или различные микроконтроллеры. Им нужен только постоянный уровень напряжения 5 В.Итак, мы должны использовать схему регулятора постоянного напряжения.

    Когда ток меньше 100 мА. Мы можем использовать транзистор и стабилитрон. (Легко и экономично). Но больше всего, если ток меньше 1А.
    Часто выбираем регулятор IC-7805. Потому что его легко найти, дешевый

  • 12 вольт
    Когда мы используем обычные нагрузки, такие как микросхемы аудиоусилителей, схемы релейного управления или даже цифровые микросхемы CMOS. Мы можем использовать схему питания 12 В.

    Мы можем использовать нерегулируемый источник питания в некоторых цепях, не требующих высокой точности.Просто есть небольшие пульсации напряжения, например в цепи управления реле.

    Если в цепи требуется постоянный уровень напряжения, также должен быть регулятор на 12 вольт.

Есть идеи? См. Схему ниже, которую вы четко поймете.

Некоторые хотят блок питания вместо батареи. Это хорошая идея, потому что она подходит для использования с низким током.

Источник питания 12 В и 5 В @ 1 А

Схема источника питания накопителя компакт-дисков

Если у вас старый дисковод компакт-дисков.Он может воспроизводить только аудио компакт-диск, отличный звук. Но для этого нужна схема питания 12В 5В. У нас есть много способов создать источник питания постоянного тока для проигрывателя аудио компакт-дисков.

Что еще? Сделаем блок питания для Нашего Музыкального плеера.

Схема питания 12 В 5 В с использованием 7805 и LM7812

Посмотрите на схему ниже. Это может обеспечить постоянное напряжение 5 В и 12 В при 1 А.

Поскольку привод CD-ROM представляет собой электронные компоненты, требующие регулируемого источника питания.Итак, мы используем 3-контактную интегральную схему с фиксированным напряжением 1 А, 7805 и 7812.

Подробнее: Техническое описание регулятора 7805

Эта схема представляет собой обычную схему источника питания регулятора, которую многие люди, возможно, видели знакомой.

Схема состоит из нерегулируемого и регулируемого источника питания IC7805-7812.

Сначала рассмотрим нерегулируемые поставки. Они состоят из важного оборудования, такого как трансформаторы, диодный выпрямитель и конденсаторный фильтр.

Рекомендуется:

Как это работает

Вот пошаговый процесс.

Сначала сеть переменного тока (230 В / 117 В) проходит в цепь через F1. Это простое устройство. Защищает при отключении электроэнергии.

Затем ступенчатый трансформатор преобразует сеть переменного тока в низкое напряжение 12 В, 6 В с трансформатором тока. Он определяет максимальный требуемый ток. В данном случае нам нужен выходной ток 1А как 5В, так и 12В. Поэтому следует выбирать трансформатор на 2А.

Мы установили схему как двухполупериодный выпрямитель с помощью четырех дидо.

Если вы новичок, прочтите сначала:
Принцип нерегулируемого источника питания .
Я вам сейчас не объясняю. Из-за этого статья будет слишком длинной.

Посмотрите на сокращенную принципиальную схему.

Есть два раздела.

  • 5V Секция
    При 6V CT 6V, D2 и D3 выпрямляют переменный ток 6V в DCV. Затем конденсатор фильтра C1 до чистого постоянного тока. Также важен C1. Мы должны использовать правильную емкость. Если использовать слишком низкое, мы получим низкое напряжение постоянного тока и высокую пульсацию. Теперь напряжение на C1 составляет около 8,4 В.
  • 12V Раздел
    При 12В CT 12V, D1 и D4 выпрямляют переменный ток 12В в постоянный ток, а C2 также сглаживает его до чистого постоянного тока.Но на C2 он имеет напряжение 17V.

А Затем оба напряжения поступают на регулятор 7805 и 7812. Для поддержания стабильного выходного напряжения — 5 В и 12 В при 1 А.

C3 и C5 тоже фильтры. А C4 и C6 также уменьшают частотные искажения или переходные процессы.

Детали, которые вам понадобятся
D1, D2, D3, D4, D5: 1N4007, 1000V 1A Диоды
IC1: 7805, регуляторы 5V 1A IC
IC2: 7812, регуляторы 12V 1A IC

Электролитические конденсаторы
C1: 2,200 мкФ 25 В
C2: 2200 мкФ 16 В
C3: 100 мкФ 16 В
C5: 100 мкФ 25 В
C4, C6: 0.Керамический конденсатор 1 мкФ 50 В
T1: 230 В или 117 (в зависимости от страны) Первичная обмотка переменного тока на 12 В, 6 В, трансформатор тока 2 А, вторичный трансформатор
F1: Предохранитель 1 А

12 В 2 А и 5 В Схема источника питания

Если вашей нагрузке требуется больше потоков. Например, автомобильные аудиоусилители. Требуется напряжение питания от 12 В до 2 А. Мы можем легко изменить схему выше.

Посмотрите новую схему обновления.

Поддерживаем цепь питания 5В. Но измените схему питания 12 В, чтобы она стала версией транзистора и стабилитрона.

Даже с большим количеством оборудования. Но понять не так уж и сложно.

Нам тока нужно больше. Приходится менять диоды на 1N5402. Он может подключать максимальный ток до 3А.

И, добавьте еще один конденсатор C2, чтобы увеличить емкость, если ток больше, чем в 2 раза. Это делает более стабильным ток.

В любом случае, мы видим, что схема представляет собой последовательный транзисторный регулятор напряжения.

Подробнее: Фиксированный стабилизатор на транзисторе и стабилитроне

Эта схема требует большего входного напряжения, что увеличивает эффективность.Падение напряжения на C1 и C2 увеличивается до 15Vx1,414 = 21V. Схема преобразователя постоянного тока

12В 3А на транзисторе и стабилитроне

Это лучше, чем раньше. Мы добавляем два транзистора в форме Дарлингтона (Q1, Q2), чтобы увеличить ток до 2A или 3A макс.

Стабилитрон настроен на постоянное напряжение 12 В. И мы добавляем два диода, чтобы компенсировать потерю напряжения на выводе BE каждого транзистора (0,6 В + 0,6 В).

Это означает, что выходное напряжение будет точнее 12 В.

Для других устройств Исходная схема — C4: конденсатор фильтрует любой шум. C3 снижает пульсации напряжения.

Детали, которые вам понадобятся
D1, D2, D3, D4, D5: 1N5402, 200V 3A Диоды
IC1: 7805, 5V 1A регуляторы IC
Q1: BC548, 45V 0.1A, NPN Transistor
Q2: TIP3055, 50V 15A, транзистор NPN

Электролитические конденсаторы
C1, C2: 2200 мкФ 25 В
C5: 2200 мкФ 16 В
C6: 100 мкФ 16 В
C3: 22 мкФ 25 В
C4, C7: 0,1 мкФ 50 В керамический конденсатор
R1: 470 Ом 0.Резисторы 25 Вт, допуск: 5%
T1: 230 В или 117 (в зависимости от страны) Первичная обмотка переменного тока до 12 В, 6 В, вторичный трансформатор CT при 2 А
F1: Предохранитель 1 А

12 В 3 А и 5 В 2 А Цепь регулятора

Наш друг (Суреш ) требуется источник питания постоянного тока 12 В и 5 В при 2 А. У нас есть много способов сделать это. Но эта схема, представленная ниже, может быть лучшим выбором.

12V 3A и 5V 2A Схема источника питания

Мы немного изменим схему выше.

  • Поменять размер трансформатора на 3А.
  • Уход за оборудованием аналогичен 12В.Но он по-прежнему подает ток до 3А.
  • Добавьте силовой транзистор TIP2955, чтобы увеличить ток.

См. 5 В большой ток до 2 А .

Цифровой CMOS и источник питания TTL

Иногда в наших электронных схемах используются разные уровни напряжения. Например, в цифровых схемах, использующих оба семейства микросхем TTL. Для чего требуется только питание 5 В. Подключается к семейству микросхем CMOS, которые используют питание 12 В.

Подключение CMOS к TTL на разных уровнях питания

Узнайте, как использовать CMOS IC

Мы можем легко подключить оба с помощью транзисторной схемы, указанной выше.

И мы можем использовать схему питания для цифровой ИС в соответствии со схемой ниже

12В 5В Схема питания для цифровых CMOS и TTL

Эта схема является модифицированной схемой выше. Есть много моментов, которые следует учитывать.

  • Мы используем трансформатор 15 В только с одной первичной обмоткой и поэтому используем схему мостового выпрямителя.
  • Низкий выходной ток не более 1А, которого достаточно для обычных цифровых схем.
  • Сохраните конденсаторный фильтр, но мы получим стабилизатор 5В с меньшим шумом, потому что он получает напряжение от регулятора 12В.

Рекомендуется: Цепь двойного источника питания 15 В с платой

Необходимые детали
D1, D2, D3, D4, D5: 1N4007, 1000 В, 1A Диоды
IC1: 7812, регуляторы постоянного тока 12 В IC
IC2: 7805, регуляторы постоянного тока 5 В IC

Электролитические конденсаторы
C1: 2200 мкФ 25 В
C3: 100 мкФ 25 В
C2, C4: 0,1 мкФ 63 В полиэфирный конденсатор
T1: 230 В или 117 В в зависимости от страны, первичный ток переменного тока до 15 В, вторичный 1 А трансформатор

Также цепи питания 5В 9В 12В

Что еще? Вы можете посмотреть другие схемы питания: Нажмите здесь

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Как построить схему импульсного источника питания — SMPS

С появлением современных микросхем и интегральных схем блоки питания сегодня стали намного эффективнее и изящнее в своей конструкции. Эта технология также сделала эти устройства удивительно легкими, но при этом значительно мощными.

Один из таких выдающихся чипов от FAIRCHILD Semiconductor , FAN7602B специально разработан для схем импульсного источника питания (SMPS) или приложений автономных адаптеров, которые в настоящее время широко используются для питания DVD-плееров, зарядных устройств сотовых телефонов, ЖК-мониторов. и т.п.

Таким образом, ИС становится идеально подходящей для схем ШИМ-контроллера в режиме зеленого тока. Эти схемы обладают интересной особенностью перехода в «спящий режим», когда подключенная нагрузка находится в состоянии покоя, и возврата в действие, когда нагрузка становится работоспособной. В «спящем» режиме схема потребляет очень мало энергии (в микроваттах) и мгновенно возвращается обратно с заданной оптимальной мощностью, необходимой для нагрузки в активном состоянии.

Давайте обсудим основные характеристики ИС, которые также становятся основными характеристиками предлагаемой схемы образца SMPS от FAIRCHILD:

Fail Proof Safety Features

Start-up Circuit and Soft Start Block : Stage включает в себя: пусковой выключатель, который помогает минимизировать потери мощности внешней стандартной пусковой цепи.Процедура может быть объяснена следующим образом:

Конденсатор (Vcc) внутри ИС заряжается схемой запуска через источник тока 0,9 мА при подключении к линии переменного тока.

Как только ИС «просыпается», пусковой переключатель выключается примерно через 15 мс.

Функция плавного пуска запускается, как только Vcc достигает 12 В — порогового начального напряжения, и останавливается, когда напряжение плавного пуска достигает единицы вольт.

Конденсатор Vcc может снова начать заряжаться через схему запуска в случае, если Vcc упадет до минимального значения 8 В, и это заставит UVLO отключить выходную схему возбуждения, когда напряжение плавного пуска станет равным нулю.Цикл повторяется, когда напряжение снова достигает начального порогового значения.

Блок осциллятора : Он отвечает за обеспечение частоты переключения и внутренне установлен на 65 кГц.

Этап измерения тока и обратной связи : Этот этап включен с целью измерения тока и обеспечения напряжения обратной связи для схем ШИМ, работающих в токовом режиме. Эти функции выполняет единственный вывод # 3 микросхемы.

Измерение тока осуществляется через RC-фильтр, состоящий из резистора и конденсаторной сети, которая соответствует данным обратной связи по напряжению и соответственно регулирует напряжение смещения IC.

Блок пакетного режима : Этот этап помогает сделать схему более энергоэффективной в условиях низкой или нулевой нагрузки. Компаратор гистерезиса используется для контроля напряжения смещения ступени Burst + для пакетного режима. IC инициирует эту функцию, когда напряжение пакетного + смещения поднимается выше 0,95 В, и завершает функцию пакетного режима, когда указанное выше напряжение падает ниже 0,88 В. Напряжение смещения обнаруживается во время периодов выключения.

FAN7602B также включает важные параметры безопасности для повышения стабильности цепи; они следующие:

Защита от перегрузки : Эта функция отслеживает и проверяет потребляемый ток нагрузки, если он превышает указанные пределы, усилитель ошибки обратной связи насыщается, так что выходное напряжение падает для компенсации и устранения проблемы.

Защита от пониженного напряжения в линии : Для любой схемы преобразователя низкие входные напряжения могут быть опасными, и поэтому возникает необходимость включения каких-либо мер безопасности для противодействия этому. Защита линии от пониженного напряжения внутри FAB7602B гарантирует, что в таких условиях он обнаруживает неисправность и немедленно отключает выход, избегая опасных ситуаций для цепи преобразователя.

Latch Protection : Функция защелкивающейся защиты реализуется через вывод «защелки» на ИС, а также отвечает за мониторинг аномальных условий напряжения в цепи и может отключать выход, если возникают какие-либо неправильные или подозрительные условия напряжения. обнаружен.

Защита от перенапряжения : Он просто выполняет то, что предполагает его название, то есть защищает схему от недопустимых высоковольтных входов, а именно, если Vcc увеличивается выше 19 В, ИС выключается и возвращается к питанию, когда Vcc возвращается примерно к 5В.

Профессиональная высококачественная схемотехника SMPS

На следующей схеме показана идеальная схема импульсного источника питания от FAIRCHILD, включающая рассмотренную выше микросхему FAN7602B. Как можно видеть, большинство используемых компонентов относятся к популярным типам и легко доступны, за исключением катушки индуктивности, которую необходимо собрать дома.Полная информация о конструкции трансформатора также представлена ​​ниже (из примечаний по применению FAIRCHILD). Предпочтительно, чтобы схема была построена на хорошо спроектированной печатной плате, чтобы свести к минимуму процедуры поиска и устранения неисправностей.

Ссылка

FAIRCHILD Datasheet — FAN7602B

Схема источника питания 12 В 1A SMPS на печатной плате

Каждое электронное устройство или продукт требует надежного блока питания (PSU) для работы.Почти все устройства в нашем доме, такие как телевизор, принтер, музыкальный проигрыватель и т. Д., Состоят из встроенного блока питания, который преобразует сетевое напряжение переменного тока в подходящий уровень постоянного напряжения для их работы. Наиболее часто используемым типом цепи питания является SMPS (импульсный источник питания) , вы можете легко найти этот тип цепей в своем адаптере 12 В или зарядном устройстве для мобильных устройств / ноутбуков. В этом руководстве мы узнаем , как построить схему 12 В SMPS , которая преобразует мощность сети переменного тока в 12 В постоянного тока с максимальным номинальным током 1.25А. Эту схему можно использовать для питания небольших нагрузок или даже приспособить к зарядному устройству для зарядки свинцово-кислотных и литиевых аккумуляторов. Если эта схема блока питания 12 В 15 Вт не соответствует вашим требованиям, вы можете проверить различные схемы блока питания с разными номиналами.

Цепь ИИП 12 В — Соображения по проектированию

Перед тем, как приступить к проектированию любого источника питания, необходимо провести анализ требований в зависимости от среды, в которой будет использоваться наш источник питания.Различные типы источников питания работают в разных средах и с определенными границами ввода-вывода.

Входные характеристики

Начнем с ввода. Входное напряжение питания — это первое, что будет использоваться SMPS и будет преобразовано в полезное значение для питания нагрузки. Поскольку эта конструкция указана для преобразования AC-DC , на входе будет переменный ток (AC). Для Индии входной переменный ток доступен с напряжением 220–230 вольт, для США он рассчитан на 110 вольт.Есть также другие страны, которые используют другие уровни напряжения. Как правило, SMPS работает с универсальным входным напряжением в диапазоне . Это означает, что входное напряжение может отличаться от 85 до 265 В переменного тока. SMPS может использоваться в любой стране и может обеспечить стабильную выходную мощность при полной нагрузке, если напряжение находится в пределах 85-265 В переменного тока. SMPS также должен нормально работать при частотах 50 Гц и 60 Гц. По этой причине мы можем использовать зарядные устройства для телефонов и ноутбуков в любой стране.

Выходные характеристики

На выходной стороне мало нагрузок резистивных, мало индуктивных.В зависимости от нагрузки конструкция ИИП может быть разной. Для этого ИИП нагрузка принята как резистивная нагрузка . Однако нет ничего лучше резистивной нагрузки, каждая нагрузка состоит, по крайней мере, из некоторого количества индуктивности и емкости; здесь предполагается, что индуктивность и емкость нагрузки незначительны.

Выходные характеристики ИИП сильно зависят от нагрузки, например, сколько напряжения и тока потребуются нагрузке во всех рабочих условиях.Для этого проекта SMPS может обеспечить выходную мощность 15 Вт . Это 12 В и 1,25 А. Целевое значение пульсации выходного сигнала выбрано как меньше пик-пик 30 мВ при полосе пропускания 20000 Гц .

В зависимости от выходной нагрузки мы также должны выбрать между проектированием ИИП постоянного напряжения или ИИП постоянного тока . Постоянное напряжение означает, что напряжение на нагрузке будет постоянным, а ток будет изменяться в соответствии с изменениями сопротивления нагрузки.С другой стороны, режим постоянного тока позволяет току быть постоянным, но изменяет напряжение в соответствии с изменениями сопротивления нагрузки. Кроме того, в SMPS могут быть доступны как CV, так и CC, но они не могут работать одновременно. Когда в SMPS существуют обе опции, должен быть диапазон, в котором SMPS изменит свою выходную операцию с CV на CC и наоборот. Обычно зарядные устройства в режимах CC и CV используются для зарядки свинцово-кислотных или литиевых батарей.

Функции защиты входа и выхода

Существуют различные схемы защиты, которые могут использоваться в SMPS для более безопасной и надежной работы.Схема защиты защищает SMPS, а также подключенную нагрузку. В зависимости от расположения схема защиты может быть подключена к входу или выходу. Наиболее распространенной защитой входа является защита от перенапряжения и фильтр электромагнитных помех . Защита от перенапряжения защищает ИИП от скачков напряжения на входе или перенапряжения переменного тока . Фильтр EMI защищает SMPS от генерации EMI на входной линии. В этом проекте будут доступны обе функции. Защита выхода включает защиту от короткого замыкания , , защиту от перенапряжения , защиту от перенапряжения и защиту от перегрузки по току , .Эта конструкция SMPS также будет включать все эти схемы защиты.

Выбор микросхемы управления питанием

Для каждой цепи SMPS требуется ИС управления питанием, также известная как ИС переключения, ИС SMPS или ИС осушителя. Давайте подведем итоги проектных соображений, чтобы выбрать идеальную ИС управления питанием, которая будет подходить для нашей конструкции. Наши требования к дизайну:

  1. Выход 15 Вт. 12 В 1,25 А с пульсацией пик-пик менее 30 мВ при полной нагрузке.
  2. Универсальный входной рейтинг.
  3. Защита от перенапряжения на входе.
  4. Выходная защита от короткого замыкания, перенапряжения и перегрузки по току.
  5. Работа с постоянным напряжением.

Из приведенных выше требований есть широкий выбор ИС, но для этого проекта мы выбрали Power integration . Power Integration — это компания, производящая полупроводники, которая предлагает широкий спектр микросхем драйверов питания в различных диапазонах выходной мощности. Исходя из требований и доступности, мы решили использовать TNY268PN из семейства крошечных коммутаторов II .

На изображении выше показана максимальная мощность 15 Вт. Однако мы сделаем ИИП в открытом корпусе и для универсального входного рейтинга. В таком сегменте TNY268PN может обеспечить выходную мощность 15 Вт. Давайте посмотрим на схему контактов.

Проектирование цепи ИИП на 12 В, 1 А

Лучшим способом построения схемы является использование экспертного программного обеспечения PI Power Integration. Это отличное программное обеспечение для проектирования источников питания.Схема построена с использованием интегральной схемы питания. Процедура проектирования объясняется ниже, или вы также можете прокрутить вниз, чтобы увидеть видео, объясняющее то же самое.

Шаг -1: Выберите Tiny switch II , а также желаемый пакет. Мы выбрали пакет DIP. Выберите тип корпуса, адаптер или открытую раму. Здесь выбран Open Frame.

Затем выберите тип обратной связи. Это важно, поскольку используется топология Flyback .TL431 — отличный выбор для обратной связи. TL431 — это шунтирующий стабилизатор, обеспечивающий отличную защиту от перенапряжения и точное выходное напряжение.

Step-2: Выберите диапазон входного напряжения. Поскольку это будет универсальный входной ИИП, входное напряжение выбрано 85-265В переменного тока. Частота сети 50 Гц.

Шаг 3:

Выберите выходное напряжение, ток и мощность.Номинал SMPS будет 12 В 1,25 А. Мощность показывает 15 Вт. Рабочий режим также выбран как CV, что означает режим работы с постоянным напряжением. Наконец, все делается за три простых шага, и схема создается.

Схема и объяснение 12 В SMPS

Схема ниже немного изменена в соответствии с нашим проектом.

Прежде чем приступить к созданию прототипа, давайте рассмотрим принципиальную схему 12 В SMPS и его работу.Схема имеет следующие участки

  1. Защита от перенапряжения и отказа SMPS
  2. Преобразование переменного тока в постоянное
  3. ПИ-фильтр
  4. Схема драйвера или схема переключения
  5. Защита от пониженного напряжения.
  6. Цепь зажима
  7. Магниты и гальваническая развязка
  8. Фильтр электромагнитных помех
  9. Вторичный выпрямитель и демпферная цепь
  10. Секция фильтра
  11. Секция обратной связи.

Защита от перенапряжения на входе и отказа SMPS

Этот раздел состоит из двух компонентов, F1 и RV1.F1 — это плавкий предохранитель на 1 А 250 В переменного тока, а RV1 — это 7-миллиметровый варистор на 275 В (металлооксидный варистор). Во время скачка высокого напряжения (более 275 В переменного тока) MOV резко замыкается и перегорает входной предохранитель. Однако благодаря функции медленного срабатывания предохранитель выдерживает пусковой ток через ИИП.

Преобразование переменного тока в постоянное

Эта секция регулируется диодным мостом. Эти четыре диода (внутри DB107) составляют полный мостовой выпрямитель. Диоды — 1N4006, но стандартный 1N4007 справится с этой задачей отлично.В этом проекте эти четыре диода заменены полным мостовым выпрямителем DB107.

ПИ-фильтр

В разных штатах разный стандарт подавления электромагнитных помех. Эта конструкция соответствует стандарту EN61000-Class 3 , а фильтр PI разработан таким образом, чтобы уменьшить подавление синфазных электромагнитных помех . Этот раздел создается с использованием C1, C2 и L1. C1 и C2 — конденсаторы 400 В 18 мкФ. Это нечетное значение, поэтому для этого приложения выбрано 22 мкФ 400 В.L1 — это синфазный дроссель, который принимает дифференциальный сигнал электромагнитных помех для подавления обоих.

Схема драйвера или схема переключения

Это сердце ИИП. Первичная обмотка трансформатора управляется коммутационной схемой TNY268PN. Частота переключения 120-132 кГц. Из-за этой высокой частоты коммутации можно использовать трансформаторы меньшего размера. Схема переключения состоит из двух компонентов: U1 и C3. U1 — это основная микросхема драйвера TNY268PN.C3 — это байпасный конденсатор , который необходим для работы нашей микросхемы драйвера.

Защита от пониженного напряжения

Защита от блокировки при пониженном напряжении обеспечивается резисторами считывания R1 и R2. Он используется, когда SMPS переходит в режим автоматического перезапуска и определяет линейное напряжение.

Схема зажима

D1 и D2 — цепь зажима. D1 — это TVS-диод , а D2 — — сверхбыстрый восстанавливающийся диод .Трансформатор действует как огромная катушка индуктивности на интегральной схеме драйвера питания TNY268PN. Следовательно, во время выключения трансформатор создает скачков напряжения из-за индуктивности рассеяния трансформатора . Эти высокочастотные всплески напряжения подавляются диодным зажимом на трансформаторе. UF4007 выбран из-за сверхбыстрого восстановления, а P6KE200A выбран для работы TVS.

Магниты и гальваническая развязка

Трансформатор представляет собой ферромагнитный трансформатор, который не только преобразует высокое напряжение переменного тока в низкое, но также обеспечивает гальваническую развязку.

Фильтр электромагнитных помех

Фильтрация электромагнитных помех осуществляется конденсатором C4. Это увеличивает невосприимчивость схемы, чтобы уменьшить высокие помехи EMI.

Вторичный выпрямитель и демпферная цепь

Выходной сигнал трансформатора выпрямляется и преобразуется в постоянный ток с помощью выпрямительного диода Шоттки D6. Демпферная цепь на D6 обеспечивает подавление переходных процессов напряжения во время операций переключения.Схема демпфера состоит из одного резистора и одного конденсатора, R3 и C5.

Секция фильтра

Секция фильтра состоит из конденсатора фильтра C6. Это конденсатор с низким ESR для лучшего подавления пульсаций. Кроме того, LC-фильтр, использующий L2 и C7, обеспечивает лучшее подавление пульсаций на выходе.

Отдел обратной связи

Выходное напряжение определяется U3 TL431 и R6 и R7. После считывания линии U2 оптопара управляется и гальванически изолирует часть измерения вторичной обратной связи с контроллером первичной стороны.Оптопара имеет внутри транзистор и светодиод. Управляя светодиодом, можно управлять транзистором. Поскольку связь осуществляется оптически, она не имеет прямого электрического соединения, что обеспечивает гальваническую развязку цепи обратной связи.

Теперь, когда светодиод напрямую управляет транзистором, обеспечивая достаточное смещение через светодиод оптопары, можно управлять транзистором оптопары , а точнее схемой драйвера. Эта система управления используется TL431.Поскольку у шунтирующего регулятора есть резисторный делитель на опорном выводе, он может управлять светодиодом оптопары, подключенным к нему. Контакт обратной связи имеет опорное напряжение 2,5 В . Следовательно, TL431 может быть активен только при достаточном напряжении на делителе. В нашем случае делитель напряжения установлен на значение 12В. Следовательно, когда выходное напряжение достигает 12 В, TL431 получает 2,5 В через опорный вывод и, таким образом, активирует светодиод оптопары, который управляет транзистором оптопары и косвенно управляет TNY268PN.Если на выходе недостаточно напряжения, цикл переключения немедленно приостанавливается.

Сначала TNY268PN активирует первый цикл переключения, а затем определяет свой вывод EN. Если все в порядке, он продолжит переключение, если нет, он будет пытаться еще раз через некоторое время. Этот цикл продолжается до тех пор, пока все не нормализуется, что предотвращает проблемы с коротким замыканием или перенапряжением. Вот почему это называется топологией обратного хода, поскольку выходное напряжение возвращается к драйверу для измерения связанных операций.Кроме того, цикл попыток называется режимом сбоя работы в условиях отказа.

D3 — это диод с барьером Шоттки . Этот диод преобразует высокочастотный выход переменного тока в постоянный. Диод Шоттки 3A 60V выбран для надежной работы. R4 и R5 выбираются и рассчитываются PI Expert. Он создает делитель напряжения и передает ток на светодиод оптопары от TL431.

R6 и R7 — это простой делитель напряжения, рассчитываемый по формуле TL431 REF Voltage = (Vout x R7) / R6 + R7 .Опорное напряжение составляет 2,5 В, а выходное напряжение — 12 В. Выбрав значение R6 23,7k, R7 стал примерно 9,09k.

Изготовление печатной платы для цепи SMPS 12 В, 1 А

Теперь, когда мы понимаем, как работают схемы, мы можем приступить к созданию печатной платы для нашего SMPS. Поскольку это схема SMPS, рекомендуется использовать печатную плату, так как она может решить проблему шума и изоляции. Компоновку печатной платы для указанной выше схемы также можно загрузить как Gerber по ссылке

.

Теперь, когда наш дизайн готов, пора изготовить их с помощью файла Gerber.Сделать печатную плату довольно просто, просто следуйте инструкциям ниже

Шаг 1: Зайдите на сайт www.pcbgogo.com, зарегистрируйтесь, если это ваш первый раз. Затем на вкладке прототипа печатной платы введите размеры вашей печатной платы, количество слоев и количество требуемых печатных плат. Предполагая, что размер печатной платы составляет 80 см × 80 см, вы можете установить размеры, как показано ниже.

Шаг 2: Продолжите, нажав кнопку Quote Now . Вы попадете на страницу, где при необходимости установите несколько дополнительных параметров, например, используемый материал, расстояние между дорожками и т. Д.Но в большинстве случаев значения по умолчанию будут работать нормально. Единственное, что мы должны здесь учитывать, — это цена и время. Как видите, время сборки составляет всего 2-3 дня, а для нашего PSB это всего лишь 5 долларов. Затем вы можете выбрать предпочтительный способ доставки в зависимости от ваших требований.

Шаг 3: Последний шаг — загрузить файл Gerber и продолжить оплату. Чтобы убедиться, что процесс проходит гладко, PCBGOGO проверяет, действителен ли ваш файл Gerber, прежде чем продолжить оплату.Таким образом, вы можете быть уверены, что ваша печатная плата удобна для изготовления и будет доставлена ​​вам, как и обещано.

Сборка печатной платы

После того, как плата была заказана, она пришла ко мне через несколько дней, правда, курьером в аккуратно промаркированной, хорошо упакованной коробке, и, как всегда, качество печатной платы было потрясающим. Печатная плата, которую я получил, показана ниже

.

Включил паяльник и приступил к сборке платы.Поскольку посадочные места, контактные площадки, переходные отверстия и шелкография идеально подходят по форме и размеру, у меня не возникло проблем со сборкой платы. Моя печатная плата, прикрепленная к тискам для пайки, показана ниже.

Закупка комплектующих

Все компоненты для этой цепи 12 В 15 Вт SMPS закупаются в соответствии со схемой. Подробную спецификацию можно найти в приведенном ниже файле Excel для загрузки.

Почти все компоненты доступны для использования в готовом виде.У вас могут возникнуть проблемы с поиском подходящего трансформатора для этого проекта. Обычно обратный трансформатор для коммутации цепей SMPS недоступен напрямую от поставщиков, в большинстве случаев вам придется наматывать собственный трансформатор, если вам нужны эффективные результаты. Однако также можно использовать аналогичный обратный трансформатор, и ваша схема все равно будет работать. Идеальная спецификация для нашего трансформатора будет обеспечена программным обеспечением PI Expert, которое мы использовали ранее.

Механическая и электрическая схема трансформатора, полученная от PI Expert, показана ниже.

Если вы не можете найти подходящего поставщика, вы можете восстановить трансформатор от адаптера 12 В или других цепей SMPS. В качестве альтернативы вы также можете купить трансформатор самостоятельно, используя следующие материалы и инструкции по намотке.

Как только все компоненты будут закуплены, их сборка должна быть легкой. Вы можете использовать файл Gerber и спецификацию для справки и собрать плату PCB.После этого моя передняя и задняя стороны печатной платы выглядят примерно так, как показано ниже

.

Тестирование нашей цепи SMPS 15 Вт

Теперь, когда наша трасса готова, пора покрутить ее. Мы подключим плату к нашей сети переменного тока через VARIAC, загрузим на выходную сторону нагрузочную машину и измерим пульсирующее напряжение, чтобы проверить работоспособность нашей схемы. Полное видео с процедурой тестирования также можно найти в конце этой страницы.На изображении ниже показана схема, испытанная с входным напряжением переменного тока 230 В переменного тока, для которого мы получаем выходное напряжение 12,08 В

.

Измерение пульсаций напряжения с помощью осциллографа

Чтобы измерить пульсирующее напряжение осциллографом, измените вход осциллографа на переменный ток с коэффициентом усиления 1x. Затем подключите электролитический конденсатор с низким энергопотреблением и керамический конденсатор с низким энергопотреблением для снижения шума из-за проводки. Вы можете обратиться к странице 40 этого документа RDR-295 от Power Integration для получения дополнительной информации об этой процедуре.

Приведенный ниже снимок был сделан в состоянии холостого хода как при 85 В переменного тока, так и при 230 В переменного тока. Шкала установлена ​​на 10 мВ на деление, и, как вы можете видеть, пульсация составляет почти 10 мВ пик-пик.

При входном напряжении 90 В переменного тока и полной нагрузке пульсации можно увидеть на уровне около 20 мВ пик-пик

При 230 В переменного тока и при полной нагрузке пульсации напряжения измеряются на уровне около 30 мВ пик-пик, что является наихудшим сценарием

Вот и все; вот как вы можете спроектировать свою собственную схему 12 В SMPS .После того, как вы поймете принцип работы, вы можете изменить принципиальную схему 12 В SMPS в соответствии с вашими требованиями к напряжению и питанию. Надеюсь, вы поняли руководство и получили удовольствие от изучения чего-то полезного. Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев или воспользуйтесь нашим форумом для технических обсуждений. Встретимся снова с еще одним интересным дизайном SMPS, а пока подпишусь….

Регулируемый импульсный источник питания высокой мощности (SMPS) 3-60 В 40A

Регулируемый импульсный источник питания высокой мощности (SMPS) 3-60 В 40A

Этот импульсный источник питания был построен, потому что мне нужен был мощный настольный регулируемый источник питания.Линейная топология была бы непригодна для этой мощности. (2400Вт = 2,4 киловатта!), Поэтому я выбрал коммутационную топологию «два переключателя вперед» (полууправляемый мост). В моей статье про SMPS это топология II.D. Импульсный источник питания использует транзисторы IGBT и управляется микросхемой UC3845. Схему моего импульсного блока питания вы можете увидеть ниже. Сетевое напряжение сначала проходит через фильтр помех EMI. Затем он выпрямляется с помощью мостового выпрямителя и сглаживается конденсатором C4.Из-за большой емкости имеется схема ограничения броска тока с контактом реле Re1 и резистором R2. Катушка реле и вентилятор (от блока питания ПК AT / ATX) питаются от 12В, которое сбрасывается с вспомогательного источника 17В с помощью резистора R1. Выберите значение R1 так, чтобы напряжение на катушке реле и на вентиляторе составляло 12 В. В цепи вспомогательного источника питания используется TNY267. Это похоже на источник питания, описанный здесь. R27 обеспечивает защиту от пониженного напряжения вспомогательного питания — он не включается при напряжении ниже 230 В постоянного тока.Цепь управления UC3845 имеет выходную частоту 50 кГц и максимальный рабочий цикл 47%. Питается через стабилитрон, снижающий напряжение питания. на 5,6 В (то есть до 11,4 В), а также сдвигает пороги UVLO с 7,9 В (нижний) и 8,5 В (верхний) до 13,5 В и 14,1 В. Затем микросхема UC3845 начинает работать на 14,1 В и никогда не опускается ниже 13,5 В, что защищает транзисторы IGBT от рассыщения. Исходные пороги UVLO UC3845 просто слишком низкие. Микросхема управляет полевым МОП-транзистором T2, который управляет трансформатором управления затвором Tr2.Он обеспечивает гальваническую развязку и плавающий привод для верхних IGBT. Через схемы формирования с T3 и T4 он управляет затворами IGBT T5 и T6. Затем они переключают выпрямленное сетевое напряжение (325 В) на силовой трансформатор. Tr1. Его выходной сигнал затем выпрямляется и, наконец, усредняется катушкой индуктивности L1 и сглаживается конденсаторной батареей C17. Обратная связь по напряжению подключен от выхода к контакту 2 IO1. Выходное напряжение блока питания можно установить с помощью потенциометра P1. Гальваническая развязка обратной связи не требуется потому что цепь управления подключена к вторичной стороне SMPS и изолирована от сети.Обратная связь по току осуществляется через ток трансформатор TR3 в вывод 3 микросхемы UC3845. Пороговый ток максимальной токовой защиты может быть установлен потенциометром P2.
Транзисторы Т5 и Т6, диоды D5, D5 ‘, D6, D6’, D7, D7 ‘и мост следует разместить на радиаторе. Диоды D7, конденсаторную батарею C15 и защитные демпферы RDC R22 + D8 + C14 следует размещать как можно ближе к IGBT. Светодиод 1 показывает работу блока питания, Светодиод 2 показывает режим ограничения тока (перегрузка / короткое замыкание) или ошибку.Загорается, когда блок питания не работает в режиме напряжения. В режиме напряжения на на контакте 1 IO1 2,5 В, иначе около 6 В. Светодиоды можно не устанавливать.
Индуктивности: Силовой трансформатор Tr1, который я спас от старого мощного импульсного источника питания 56 В. Коэффициент трансформации первичной обмотки во вторичную составляет от 3: 2 до 4: 3, а ферритовый сердечник (форма EE) имеет нет воздушного зазора. Если вам нравится наматывать его самостоятельно, используйте такой же сердечник, который я использовал в своем сварочном инверторе, около 6.4 см2 (допустимый диапазон 6-8 см2). Первичная обмотка — это 20 витков по 20 проводов, каждый диаметром от 0,5 до 0,6 мм. Вторичная на 14 витков из 28 проводов вместе, того же диаметра, что и первичный. Также возможно изготовление обмоток из медных лент. Напротив, использование одной толстой проволоки невозможно из-за скин-эффекта (так как она работает с высокими частоты). Разделение обмотки не требуется, вы можете, например, сначала намотать первичную, а затем вторичную. Трансформатор прямого затвора Тр2 имеет три обмотки по 16 витков в каждой.Все обмотки наматываются сразу тремя скрученными изолированными проводами звонка. Это намотано на ферритовом сердечнике EI (также можно использовать EE) без воздушного зазора. Я спас его от главного силового трансформатора от компьютерного блока питания ATX или AT. Жила имеет поперечное сечение от 80 до 120 мм2. Трансформатор тока TR3 имеет 1 виток первичной обмотки и 68 витков вторичной обмотки на ферритовом или железном порошковом кольце, и размер или количество витков не критичны. В случае разного количества оборотов необходимо отрегулировать R15.Дополнительный силовой трансформатор TR4 намотан на ферритовом сердечнике EE с воздушным зазором сечением от 16 до 25 мм2. Он исходит от вспомогательного силового трансформатора, взятого из старого ATX. Обязательно соблюдайте ориентацию обмоток трансформаторов (отмечены точками)! Двухобмоточный фильтр электромагнитных помех может быть, например, из микроволновой печи. Выходная катушка L1 также поступает от 56-вольтового импульсного источника питания, который я разобрал. Он состоит из двух параллельных катушек индуктивности 54 мкГн на кольцах из порошкового железа, поэтому общая индуктивность составляет 27 мкГн.Каждая катушка намотана двумя магнитными медными проволоками диаметром 1,7 мм каждая. В этом случае общее сечение обмоток L1 составляет примерно 9 мм2.
L1 подключен к отрицательной ветви, поэтому на катодах диодов нет ВЧ напряжения. и поэтому их можно установить на радиаторе без изоляции. Максимальная входная мощность этого импульсного источника питания составляет около 2600 Вт и КПД при полной нагрузке более 90%. В этом импульсном источнике питания я использовал IGBT STGW30NC60W. Их можно заменить на типы IRG4PC40W, IRG4PC50W, IRG4PC50U, STGW30NC60WD или аналогичные достаточно мощные и быстрые, рассчитанные на 600В.Выходные диоды могут быть любыми сверхбыстродействующими с достаточным номинальным током. Верхний диод (D5) видит Средний ток 20А в худшем случае, нижний диод (D6) видит 40А в худшем случае. Таким образом, верхний диод может быть рассчитан на половину тока нижнего диода. Верхний диод может быть, например, двумя параллельными HFA25PB60 / DSEI30-06A или одиночным DSEI60-06A / STTH6010W / HFA50PA60C. Нижний диод может быть двух параллельных. DSEI60-06A / STTH6010W / HFA50PA60C или четыре HFA25PB60 / DSEI30-06A. Радиатор диодов должен рассеивать примерно 60 Вт.Рассеиваемая мощность IGBT может достигать 50 Вт. Рассеивание диодов D7 трудно предсказать, поскольку оно зависит от свойств Tr1 (его индуктивности и связи). Рассеиваемая мощность мостового выпрямителя до 25Вт. Этот источник питания использует схему, очень похожую на мой сварочный инвертор, так как это действительно хорошо работает. Переключатель S1 позволяет отключиться в режиме ожидания. Это полезно, так как вам не всегда нужно переключать вход питания этого мощного источника питания. Потребление в режиме ожидания всего около 1Вт.S1 можно не указывать. Этот блок питания также может быть сконструирован для фиксированное выходное напряжение. В этом случае рекомендуется оптимизировать коэффициент трансформации Tr1 для достижения наилучшего КПД. (например, первичная обмотка имеет 20 витков, а седельная — 1 виток на каждые 3,5 — 4 В выходного напряжения).

Внимание!!! Импульсное питание не для новичков, так как большинство его цепей подключено к сети. Опасность поражения электрическим током и смерти. Опасность пожара.Напряжение сети может попасть на выход при неправильной конструкции! Конденсаторы могут оставаться заряженными до опасного напряжение даже после отключения от сети. Выходное напряжение может быть выше безопасного напряжения прикосновения. Это импульсный источник питания большой мощности. Вход переменного тока должен иметь соответствующий предохранитель, розетка и кабель должны иметь размеры. для потребляемого тока, в противном случае существует опасность возгорания. Вы все делаете на свой страх и риск и ответственность.



Бедро моего мощного регулируемого импульсного источника питания (SMPS) 3-60V 40A.


Готовый импульсный блок питания


Передняя панель импульсного блока питания — контроль напряжения, контроль ограничения тока, переключатель режима ожидания S1 и светодиоды.


Коробка от старого блока питания 56В готова к установке моего блока питания 3 — 60В.


Оригинальная передняя панель


Коробка с вентилятором 8см.


Радиатор, Tr1, L1 и C17 старого блока питания, который будет использоваться для построения моего блока питания.


Подготовили D5 и D6.


IGBT и диоды сброса D7 на радиаторе и плате готовы к замене.


Выполнен ГДТ (трансформатор привода затвора) Тр2.


Начинается изготовление доски.


Доделана силовая часть, схема управления и Тр2.


Изготовление вспомогательного трансформатора 17В Тр4 (на левом фото — сердечник, на правом фото — первичный)


Готовая вторичная обмотка (слева) и готовый трансформатор Тр4 (справа).


Построение вспомогательного источника питания 17 В.


Плата взята из старого питания, со светодиодом 1 и светодиодом 2.


Вспомогательное питание после припаивания к нему Тр4.


Импульсный блок питания и конденсатор C4 (3x 680u)


Фактическая нагрузка для тестирования импульсного источника питания: нагревательный элемент 230V 2000W от котла, модифицированный на 57,5V. Одна клемма теперь является средней и обоими концами резистивного провода.Вторая клемма теперь подключена к 1/4 и 3/4 резистивного провода. Таким образом, спираль делится на 4 равные части, соединенные параллельно. Номинальное напряжение снижено до одной четверти, сопротивление до одной шестнадцатой. Мощность остается прежней.


Светящаяся спираль после подключения к тестируемому импульсному источнику питания.


Фильтр электромагнитных помех и ограничитель броска тока.


Тестирование импульсного блока питания снизу коробки.


Внутренняя часть готовой поставки.


Видео — проверка импульсного блока питания, последовательное рисование дуг со спиралью и регулирование показано на 2х лампах по 500Вт 230В.


Видео — Arsc с медными и алюминиевыми электродами.


Видео — Тестирование артера, встроенного в алюминиевый бокс.

Добавлен: 23. 10. 2010
дом

Создайте простой блок питания постоянного тока

В мире существуют более эффективные и сложные блоки питания. Есть более простые способы получить простой источник питания, подобный этому (например, повторно использовать бородавку). Но если вы сделаете такой источник питания хотя бы раз в жизни, вы будете гораздо лучше понимать, как переменный ток становится регулируемой мощностью постоянного тока. Будет много других подобных блоков питания, но этот будет вашим.

Блок питания, как мы его здесь будем называть, преобразует переменный ток из розетки на стене в постоянный. Есть несколько способов сделать это. Мы рассмотрим один из самых простых, но и наиболее наглядных примеров.

Электроэнергия проходит через несколько ступеней в источнике питания с регулятором напряжения, подобном этому или обычному настенному бородавку. Способы его изменения на каждом этапе объяснены ниже. В следующий раз, когда вы воспользуетесь бородавкой для питания одного из своих проектов, вы поймете, что происходит внутри.

Теория:

Вход переменного тока

Напряжение переменного тока, идущего от стены, изменяется от минимального до максимального с частотой 60 Гц (в США и других странах с частотой 60 Гц). Это то, что питает все приборы переменного тока в вашем доме и магазине, и это похоже на график ниже. После трансформатора график аналогичен, за исключением того, что синусоида имеет меньшую амплитуду.

Простой график, показывающий мощность переменного тока. Vin Marshall
Исправление

Первая ступень этого блока питания — выпрямитель.Выпрямитель представляет собой систему диодов, которая позволяет току течь только в одном направлении. Представьте себе односторонний обратный клапан для воды. Из-за расположения диодов в двухполупериодном выпрямителе, используемом в этой конструкции, положительная часть сигнала переменного тока проходит беспрепятственно, а отрицательная часть сигнала переменного тока фактически инвертируется и добавляется обратно в выходной сигнал выпрямителя. Теперь наш сигнал выглядит так:

График мощности переменного тока после отключения выпрямителя. Vin Marshall
Сглаживание

Теперь у нас есть по крайней мере стабильно положительные уровни напряжения, но они все еще опускаются до нуля 120 раз в секунду.Большой конденсатор, который можно представить себе как батарею, работающую на очень короткие периоды времени, устанавливается поперек цепи, чтобы выровнять эти быстрые колебания мощности. Конденсатор заряжается при высоком напряжении и разряжается при низком напряжении. С помощью конденсатора кривая напряжения выглядит так:

График мощности переменного тока при сглаживании конденсатором. Vin Marshall
Постановление

На этом этапе мы используем интегральную схему (ИС), чтобы последовательно регулировать напряжение до желаемого уровня.При выборе размеров компонентов для всех предыдущих этапов важно управлять этой ИС с уровнем напряжения, значительно превышающим регулируемое напряжение, чтобы оставшиеся провалы 120 раз в секунду не опускались ниже требуемого минимального входного значения. Однако вы не хотите использовать слишком высокое напряжение, так как эта избыточная мощность будет рассеиваться в виде тепла. Кривая напряжения в этой точке (в идеале) представляет собой сигнал постоянного тока при желаемом напряжении; горизонтальная линия.

На этом графике мощности постоянного тока нет провалов. Вин Маршалл

Что вам понадобится

Для сборки этого конкретного блока питания вам потребуется следующее:

  • Шнур питания. Где-то там должен быть один…
  • Тумблер SPST 120V
  • Монтаж на панели неоновая лампа 120V
  • 3 зажимных штыря
  • Трансформатор с входным напряжением 120 В и выходным напряжением около 24 В, чтобы Vin для регулятора 7812 оставался выше минимум. Я использовал Radio Shack p / n 273-1512.
  • Двухполупериодный мостовой выпрямитель
  • 6800 мкФ Конденсатор
  • 2 конденсатора по 100 нФ (точное значение не имеет значения)
  • 2 конденсатора по 1 мкФ (точное значение не имеет значения) конденсаторы
  • 7805 Регулятор напряжения 5 В
  • 7812 Регулятор напряжения 12 В

Инструкции

Конструкция блока питания довольно проста. Я построил этот блок питания много лет назад и использовал двухточечную проводку на монтажной плате. Есть много более чистых способов его создания, чем этот, и я рекомендую вам воспользоваться одним из них.Однако это прекрасно работает. При создании этого источника питания было бы разумно прикрепить какой-либо радиатор к регуляторам напряжения 78xx. Эту конструкцию можно довольно легко изменить для обеспечения регулируемого выходного напряжения с помощью регулятора напряжения LM317 вместо или в дополнение к указанным регуляторам напряжения. Заземлив центральный отвод вторичной обмотки трансформатора (при условии, что у вас есть трансформатор с центральным отводом), взяв положительный и отрицательный выводы от мостового выпрямителя и используя регуляторы отрицательного напряжения серий LM79xx и / или LM337, ваш источник питания может обеспечить регулируемые отрицательные напряжения.

Полная схема блока питания. Vin Marshall

Готовый продукт выглядит так:

Внутри блока питания. Вин Маршалл

Как включить проект

Добавлено в избранное Любимый 64

Обзор

Это руководство расскажет о различных способах реализации ваших электронных проектов. В нем будут подробно описаны параметры напряжения и тока, которые вы, возможно, захотите сделать.Также будут учтены дополнительные соображения, которые вы должны учесть, если ваш проект является мобильным / удаленным или, другими словами, вы не собираетесь сидеть рядом с розеткой на стене.

Если это действительно ваш первый электронный проект, у вас есть возможность прочитать это руководство или придерживаться рекомендованных материалов для проекта или платы разработки по вашему выбору. Комплект SparkFun Inventor’s Kit содержит USB-кабель, необходимый для питания, и отлично подходит для всех проектов в комплекте, а также для многих более сложных проектов.Если вы чувствуете себя подавленным, лучше всего начать с этого комплекта.

Рекомендуемая литература

Вот соответствующие уроки, которые вы можете проверить перед чтением этого:

Способы питания проекта

Вот некоторые из наиболее распространенных методов, используемых для поддержки проекта:

  • Питание от USB
  • Настольный источник питания переменного тока
  • Настенный адаптер переменного тока в постоянный (например, компьютер или ноутбук)
  • Батареи

Четыре распространенных способа электроснабжения вашего проекта

Какой вариант мне выбрать для поддержки моего проекта?

Ответ на этот вопрос во многом зависит от конкретных требований вашего проекта.

USB-питание

Если вы начинаете с SparkFun Inventor’s Kit или другой базовой платы для разработки, вам, скорее всего, понадобится только USB-кабель. Arduino Uno — это пример, для которого требуется только кабель USB A — B для подачи питания на работу схем из комплекта. Вот несколько USB-кабелей из нашего каталога для питания вашего проекта от USB-порта.

Кабель USB от A до B — 6 футов

В наличии CAB-00512

Это стандартная проблема USB 2.0 кабель. Это наиболее распространенный периферийный кабель типа «папа / папа» от А до В, из тех, что обычно…

1

Кабель USB micro-B — 6 футов

В наличии CAB-10215

USB 2.0 типа A на 5-контактный микро-USB.Это новый разъем меньшего размера для USB-устройств. Разъемы Micro USB примерно вдвое дешевле…

13
Настольный источник питания переменного тока

Если вы занимаетесь строительными проектами и регулярно тестируете схемы, настоятельно рекомендуется приобрести настольный источник питания переменного тока. Это позволит вам установить напряжение на определенное значение в зависимости от того, что вам нужно для вашего проекта.Это также дает вам некоторую защиту, поскольку вы можете установить максимально допустимый ток. Затем, если в вашем проекте произойдет короткое замыкание, питание стенда отключится, надеюсь, что предотвратит повреждение некоторых компонентов в вашем проекте.

Вот несколько настольных источников питания переменного тока из нашего каталога.

Настенные адаптеры переменного тока в постоянный

Особый источник питания переменного тока в постоянный часто используется после проверки цепи. Этот вариант также хорош, если вы часто используете одну и ту же доску разработки снова и снова в своих проектах.Эти настенные адаптеры обычно имеют заданное выходное напряжение и ток, поэтому важно убедиться, что выбранный вами адаптер имеет правильные характеристики для проекта, который вы будете использовать, и не превышать эти характеристики. Вот несколько настенных адаптеров из каталога, которые предлагают несколько усилителей.

Для более актуальных проектов, ознакомьтесь с некоторыми из этих источников питания в нашем каталоге. Просто убедитесь, что в списке рекомендованных продуктов на странице продукта вы найдете кабель, подходящий для вашего региона.

Батарейки

Если вы хотите, чтобы ваш проект был мобильным или базировался в удаленном месте, вдали от того, где вы можете получить настенное питание переменного тока из сети, батареи — это то, что вам нужно. Батарейки бывают самых разных, поэтому обязательно ознакомьтесь с последующими частями этого руководства, чтобы вы могли точно определить, что выбрать. Обычно выбираются щелочные батареи, аккумуляторы NiMH AA и литий-полимерные. Вот несколько батареек из каталога.

Литий-ионный аккумулятор — 2 Ач

В наличии PRT-13855

Это очень тонкие и чрезвычайно легкие батареи на основе литий-ионной химии.Каждая ячейка выдает номинальное напряжение 3,7 В при 200…

. 7

Щелочная батарея 9 В

В наличии PRT-10218

Это ваши стандартные щелочные батарейки на 9 вольт от Rayovac. Даже не думайте пытаться перезарядить их.Используйте их с…

1

Никель-металлгидридный аккумулятор 2500 мАч — AA

В наличии PRT-00335

Никель-металлогидридные аккумуляторные батареи AA емкостью 2500 мАч, 1,2 В. [Технология NiMH] (http://en.wikipedia.org/wiki/Nickel_metal_hy…

Если вашему проекту требуется определенное напряжение или немного больше тока от батареи, попробуйте добавить повышающий преобразователь или импульсный стабилизатор.Вы можете снимать переменное напряжение с аккумулятора и выдавать заданное напряжение 5 В. В зависимости от платы и компонентов, используемых в вашем проекте, вы потенциально можете выводить 9 В или 10 В в зависимости от конфигурации. Вам просто нужно убедиться, что вы получили необходимые компоненты для построения вашей схемы, чтобы выходное напряжение превышало 5 В. Вот несколько конвертеров из нашего каталога.

LiPower — повышающий преобразователь

В наличии PRT-10255

Плата LiPower основана на невероятно универсальном повышающем преобразователе TPS61200.Плата сконфигурирована для использования с Li…

5

Рекомендации по напряжению / току

Сколько напряжения мне нужно для Project X?

Это во многом зависит от схемы, поэтому на этот вопрос нет простого ответа. Однако большинство плат для разработки микропроцессоров, таких как Arduino Uno, имеют на борту регулятор напряжения.Это позволяет нам подавать напряжение в указанном диапазоне выше регулируемого. Многие микропроцессоры и микросхемы на платах разработки работают от 3,3 В или 5 В, но имеют регуляторы напряжения, которые могут работать от 6 В до 12 В.

Питание поступает от источника питания и затем регулируется регулятором напряжения, так что каждая микросхема получает постоянное напряжение, даже если потребляемый ток может колебаться в разное время. Здесь, в SparkFun, мы используем блоки питания 9 В для многих наших продуктов, которые работают в режиме 3.Диапазон от 3 до 5 В. Однако, чтобы проверить, какое напряжение является безопасным, рекомендуется проверить техническое описание регулятора напряжения на плате разработки, чтобы узнать, какой диапазон напряжения рекомендуется производителем.

Сколько тока мне нужно для Project X?

Этот вопрос также зависит от макетной платы и микропроцессора, которые вы используете, а также от того, какие схемы вы планируете подключать к ним. Если ваш источник питания не может дать вам количество энергии, необходимое для проекта, схема может начать работать странным и непредсказуемым образом.Это также известно как потемнение.

Как и в случае с напряжением, рекомендуется проверить таблицы данных и оценить, что может понадобиться различным частям схемы. Также лучше округлить и предположить, что вашей схеме потребуется больше тока, чем для обеспечения достаточного тока. Если ваша схема включает элементы, требующие большого количества тока, такие как двигатели или большое количество светодиодов, вам может потребоваться большой источник питания или даже отдельные источники питания для микропроцессора и дополнительных двигателей.В противном случае падение мощности может привести к сбросу микропроцессора, недостаточному крутящему моменту двигателя или неполному горению светодиодных индикаторов. Опять же, всегда в ваших интересах получить блок питания, рассчитанный на более высокий ток, и не использовать дополнительные по сравнению с блоком, который не может обеспечить достаточно.

Коричневые светодиоды с цепочкой светодиодных лент

Не знаете, насколько актуален ваш проект?

После того, как вы некоторое время поиграете со схемами, будет легче оценить количество тока, которое требуется вашему проекту.Однако распространенные способы выяснить это экспериментально — либо использовать настольный источник питания переменного тока постоянного тока, который имеет считывание тока, либо использовать цифровой мультиметр для измерения тока, идущего в вашу схему во время ее работы. Это даст вам общее представление о том, какой блок питания выбрать для вашего проекта.

Если вы не знаете, как измерить ток с помощью мультиметра, обратитесь к нашему руководству по мультиметру.

Мы настоятельно рекомендуем иметь цифровой мультиметр в вашем электронном ящике.Он отлично подходит для измерения силы тока или напряжения.

Подключения

Как подключить аккумулятор или источник питания к цепи?

Есть много способов подключить источник питания к вашему проекту.

Общие способы подключения питания к вашей цепи

Настольные переменные блоки питания обычно подключаются к цепям напрямую с помощью банановых разъемов или проводов. Они также похожи на разъемы на кабелях щупов мультиметра.

Кабели с крючками от банана к микросхеме

В наличии CAB-00506

Это различные кабели с выводами для подключения к мультиметрам, источникам питания, осциллографам, функциональным генераторам и т. Д. Кабели…

7

Кабели из банана в банан

В наличии CAB-00507

Это различные кабели с выводами для подключения к мультиметрам, источникам питания, осциллографам, генераторам функций и т. Д.Кабели…

2

Кабель от банана к аллигатору

В наличии CAB-00509

Это различные кабели с выводами для подключения к мультиметрам, источникам питания, осциллографам, генераторам функций и т. Д.Кабели…

2

Многие проекты сначала строятся на макетной плате с использованием проводов в качестве прототипа, прежде чем они станут конечным продуктом. Существует множество способов питания вашей макетной платы, многие из них используют те же разъемы, которые упоминаются здесь.

Как только проект проходит стадию прототипирования, он обычно попадает на печатную плату. Если вы планируете сделать схему один или два раза, можно перенести схему на макетную плату и вручную подключить схему для защиты проекта.Если вы планируете создавать схему более нескольких раз, вы можете рассмотреть возможность ее проектирования с помощью программного обеспечения САПР (например, Eagle), чтобы сэкономить время при подключении проекта или если вы планируете уменьшить размер всей схемы.

Одним из наиболее распространенных разъемов питания, используемых на готовой печатной плате, как в бытовой электронике, так и в электронике для хобби, является цилиндрический разъем, также известный как цилиндрический разъем. Они могут различаться по размеру, но все они работают одинаково и обеспечивают простой и надежный способ поддержки вашего проекта.В зависимости от вашего дизайна вы также можете получать питание от USB-порта компьютера или настенного адаптера.

Разъем SparkFun USB-C

В наличии BOB-15100

SparkFun USB-C Breakout обеспечивает в 3 раза большую мощность, чем предыдущая плата USB, при этом отключая каждый контакт на соединении…

5

Батареи обычно хранятся в футляре, который удерживает батареи и подключает цепь с помощью проводов или бочкообразного разъема.Некоторые батареи, такие как литий-полимерные ионные батареи, часто используют разъем JST. Вот несколько из нашего каталога.

Держатель батареи 9 В

В наличии PRT-10512

Этот держатель батареи 9 В позволяет вашей батарее плотно защелкнуться и удерживать ее на месте, что отлично подходит в ситуациях, когда вы надеваете…

3

Чтобы узнать больше о различных разъемах питания, см. Наше руководство по разъемам.

Основные сведения о разъеме

18 января 2013 г.

Разъемы — главный источник путаницы для людей, только начинающих заниматься электроникой. Количество различных вариантов, терминов и названий соединителей может сделать выбор одного или найти тот, который вам нужен, непростым. Эта статья поможет вам окунуться в мир разъемов.

Дистанционное / мобильное питание

Какую батарею мне выбрать?

Когда вы запитываете удаленную цепь, все еще возникают те же проблемы с поиском батареи, которая обеспечивает правильное напряжение и ток.Срок службы или емкость аккумулятора — это показатель общего заряда аккумулятора. Емкость аккумулятора обычно оценивается в ампер-часах, (Ач) или миллиампер-часах (мАч), и это говорит вам, сколько ампер может обеспечить полностью заряженный аккумулятор за период в один час. Например, аккумулятор емкостью 2000 мАч может обеспечивать ток до 2 А (2000 мА) в течение одного часа.

Размер, форма и вес аккумулятора также следует учитывать при создании мобильного проекта, особенно если он будет летать на чем-то похожем на небольшой квадрокоптер.Вы можете получить приблизительное представление о разнообразии, посетив этот список в Википедии. Узнайте больше о типах аккумуляторов в нашем руководстве по аккумуляторным технологиям.

Батареи, подключенные последовательно и параллельно

Вы можете добавлять батареи последовательно или параллельно, чтобы получить желаемое напряжение и ток, необходимые для вашего проекта. Когда две или более батареи помещаются в серии , напряжения батарей складываются. Например, свинцово-кислотные автомобильные аккумуляторы фактически состоят из шести одноэлементных свинцово-кислотных аккумуляторов, соединенных последовательно; шестерка 2.Ячейки 1 В в сумме дают 12,6 В. При последовательном соединении двух батарей рекомендуется, чтобы они были одного химического состава. Кроме того, будьте осторожны при последовательной зарядке аккумуляторов, так как многие зарядные устройства рассчитаны только на одноэлементную зарядку.

При подключении двух или более батарей в параллельно емкости увеличиваются. Например, четыре батареи AA, подключенные параллельно, по-прежнему будут вырабатывать 1,5 В, однако емкость батарей увеличится в четыре раза.

Какая емкость аккумулятора мне нужна для моего проекта?

На этот вопрос легче ответить, если вы определили величину тока, который обычно потребляет ваша схема.В следующем примере мы будем использовать оценку. Однако рекомендуется измерять ток, потребляемый вашей схемой, с помощью цифрового мультиметра, чтобы получить точные результаты.

В качестве примера давайте начнем со схемы, оценим ее текущий выходной ток, затем выберем батарею и посчитаем, как долго схема будет работать от батареи. Давайте выберем микроконтроллер ATmega 328, который станет нашим мозгом для схемы. В нормальных условиях он потребляет около 20 мА. Давайте теперь подключим три красных светодиода и стандартные резисторы ограничения тока 330 Ом к цифровым контактам ввода / вывода микроконтроллера.В этой конфигурации каждый добавленный светодиод заставляет схему потреблять примерно на 10 мА больше тока. Теперь давайте подключим к микроконтроллеру два мотора Micro Metal. Каждый из них при включении потребляет примерно 25 мА. Наш общий возможный текущий розыгрыш сейчас составляет:

Давайте выберем для этого стандартную щелочную батарею AA, потому что она имеет более чем достаточный ток (до 1 А), имеет приличную емкость батареи (обычно в диапазоне от 1,5 Ач до 2,5 Ач) и очень распространена. Мы предположим, что в этом примере среднее значение составляет 2 Ач.Обратной стороной использования AA является то, что он имеет выходное напряжение только 1,5 В, а поскольку остальные наши компоненты будут работать от 5 В, нам необходимо увеличить напряжение. Мы можем использовать этот повышающий разрыв на 5 В, чтобы получить необходимое нам напряжение, или мы можем использовать три батареи AA последовательно, чтобы приблизить нас к необходимому напряжению. Три последовательно включенных АА дают нам напряжение 4,5 В (3 раза по 1,5 В). Вы также можете добавить еще одну батарею на 6 В и отрегулировать напряжение до уровня, необходимого для вашей схемы.

Чтобы рассчитать, как долго цепь будет работать от батареи, мы используем следующее уравнение:

Для схемы, запитанной параллельно от 3 АА и подключенной к цепи с постоянным потребляемым током 100 мА, это соответствует:

В идеале мы могли бы получить 60 часов автономной работы от этих трех щелочных батарей AA в этой параллельной конфигурации.Однако рекомендуется «снижать номинальные характеристики» аккумуляторов, что означает предполагать, что время автономной работы будет ниже идеального. Давайте консервативно скажем, что мы получим 75% идеального времени автономной работы и, следовательно, около 45 часов автономной работы для нашего проекта.

Срок службы батареи также может варьироваться в зависимости от фактического потребляемого тока. Вот график для батареи Energizer AA, показывающий ожидаемое время автономной работы при постоянном потреблении тока.

Energizer AA, ток и время работы от батареи

Это лишь одна из многочисленных конфигураций, которые вы можете использовать для удаленного управления вашим проектом.

Ищете другие примеры? Ознакомьтесь с Powering LilyPad LED Projects, чтобы увидеть еще один пример расчета того, сколько энергии потребуется вашему проекту для светодиодов!

Стресс-тестирование

Теперь, когда вы выбрали источник питания и разъем, обязательно протестируйте свой проект и понаблюдайте за его поведением. В зависимости от производителя блоки питания могут иметь разную производительность. Обязательно протестируйте сетевой адаптер в течение определенного периода времени, чтобы убедиться, что микроконтроллер не отключится, а блок питания не сбросится под нагрузкой.Для определенных проектов, использующих емкостные сенсорные датчики, обязательно проверьте наличие задержек, вызванных шумными источниками питания.

Если вы управляете своим проектом удаленно, обязательно проверяйте его с аккумулятором. Батареи могут обеспечивать разную мощность в зависимости от подключенной нагрузки и химического состава батареи. Это также может привести к отключению микроконтроллера или прекращению подачи питания.

Ресурсы и дальнейшее развитие

Теперь вы должны знать наиболее распространенные способы питания вашей цепи и узнать, какой из них лучше всего подходит для вас в зависимости от конкретных требований вашего проекта.Теперь вы можете сделать более правильное суждение, исходя из соображений тока, напряжения, разъема и мобильности для вашего проекта. Ознакомьтесь с этими другими замечательными руководствами для мониторинга, управления или поддержки вашего проекта!

Руководство по подключению зарядного устройства USB LiPo

Как заряжать LiPo аккумуляторы с помощью зарядного устройства USB LiPo. Плюс как доработать зарядное устройство, чтобы выставить ток заряда.

Руководство по подключению экрана фотонной батареи

В Photon Battery Shield есть все, что нужно вашему Photon для работы, зарядки и мониторинга LiPo батареи.Прочтите это руководство по подключению, чтобы начать его использовать.

Что такое батарея?

Обзор внутреннего устройства батареи и того, как она была изобретена.

Или посмотрите некоторые из этих сообщений в блоге, чтобы найти идеи:

.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *