Стабилизаторов напряжения схемы: Виды и схемы стабилизаторов напряжения

Содержание

Виды и схемы стабилизаторов напряжения

Автор: Александр Старченко

Приборы для стабилизации напряжения сети применяются уже не одно десятилетие. Многие модели давно не используются, а другие пока не нашли широкого распространения, несмотря на высокие характеристики. Схема стабилизатора напряжения не является чем-то слишком сложным. Принцип работы и основные параметры различных стабилизаторов следует знать тем, кто ещё не определился с выбором.

Содержание:

  1. Виды стабилизаторов напряжения

Виды стабилизаторов напряжения

В настоящее время применяются следующие виды стабилизаторов:

  • Феррорезонансные;
  • Сервоприводные;
  • Релейные;
  • Электронные;
  • Двойного преобразования.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Феррорезонансные стабилизаторы конструктивно являются самыми простыми устройствами. Они состоят из двух дросселей и конденсатора и работают на принципе магнитного резонанса. Стабилизаторы такого типа отличаются высокой скоростью срабатывания, очень большим сроком эксплуатации и могут работать в широком диапазоне напряжения на входе. В настоящее время их можно встретить в медицинских учреждениях. В быту практически не применяются.

Принцип действия сервоприводного или электромеханического стабилизатора основан на изменении величины напряжения с помощью автотрансформатора. Устройство отличается исключительно высокой точностью установки напряжения. Вместе с тем скорость стабилизации самая низкая. Электромеханический стабилизатор может работать с очень большими нагрузками.

Релейный стабилизатор так же имеет в своей конструкции трансформатор с секционированной обмоткой. Выравнивание напряжения осуществляется с помощью группы реле, которые срабатывают по командам с платы контроля напряжения. Прибор имеет относительно высокую  скорость стабилизации, но точность установки заметно ниже за счёт дискретного переключения обмоток.

Электронный стабилизатор работает по такому же принципу, только секции обмотки регулирующего трансформатора переключаются не с помощью реле, а силовыми ключами на полупроводниковых приборах. Точность электронного и релейного стабилизатора приблизительно одинаковая, но скорость электронного устройства заметно выше.

Стабилизаторы двойного преобразования, в отличие  от других моделей, не имеют в своей конструкции силового трансформатора. Коррекция напряжения осуществляется на электронном уровне. Устройства этого типа отличаются высокой скоростью и точностью, но их стоимость намного выше, чем у других моделей. Стабилизатор напряжения 220 вольт своими руками, несмотря на кажущуюся сложность, может быть реализован именно на инверторном принципе.

Электромеханический стабилизатор

Сервоприводный стабилизатор состоит из следующих узлов:

  • Входной фильтр;
  • Плата измерения напряжения;
  • Автотрансформатор;
  • Серводвигатель;
  • Графитовый скользящий контакт;
  • Плата индикации.

 

В основе работы электромеханического стабилизатора лежит принцип регулировки напряжения путём изменения коэффициента трансформации. Это изменение осуществляется перемещением графитового контакта по свободной от изоляции обмотке трансформатора. Перемещение контакта осуществляется серводвигателем.

Напряжение сети поступает на фильтр, состоящий из конденсаторов и ферритовых дросселей. Его задача максимально очистить приходящее напряжение от высокочастотных и импульсных помех. В плате измерения напряжения заложен определённый допуск. Если напряжение сети в него укладывается, то оно сразу поступает на нагрузку.

При отклонении напряжения сверх допустимого, плата измерения напряжения подаёт команду на узел управления серводвигателем, который перемещает контакт в сторону увеличения или уменьшения напряжения. Как только величина напряжения придёт в норму, серводвигатель останавливается. Если напряжение сети нестабильно и часто изменяется, сервопривод может отрабатывать процесс регулирования практически постоянно.

Схема подключения стабилизатора напряжения малой мощности не представляет ничего сложного, поскольку на корпусе установлены розетки, а включение в сеть осуществляется шнуром с вилкой. На более мощных устройствах сеть и нагрузка подключаются с помощью винтовой колодки.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Релейный стабилизатор

В релейном стабилизаторе имеется почти такой же набор основных узлов:

  • Сетевой фильтр;
  • Плата контроля и управления;
  • Трансформатор;
  • Блок электромеханических реле;
  • Устройство индикации.

 

В этой конструкции коррекция напряжения осуществляется ступенчато, с помощью  реле. Обмотка трансформатора разделена на несколько отдельных секций, каждая из которых  имеет отвод. Релейный стабилизатор напряжения имеет несколько ступеней регулирования, число которых определяется количеством установленных реле.

Подключение секций обмотки, а, следовательно, и изменение напряжения может осуществляться либо аналоговым, либо цифровым способом. Плата управления, в зависимости от изменения напряжения на входе, подключает необходимое количество реле для обеспечения напряжения на выходе, соответствующего допуску. Стабилизаторы релейного типа имеют самую низкую цену среди этих приборов.

Пример схемы релейного стабилизатора

Еще одна схема стабилизатора релейного типа

Электронный стабилизатор

Принципиальная схема стабилизатора напряжения этого типа имеет лишь небольшие отличия от конструкции с электромагнитными реле:

  • Фильтр сети;
  • Плата измерения напряжения и управления;
  • Трансформатор;
  • Блок силовых электронных ключей;
  • Плата индикации.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

 

Принцип работы электронного стабилизатора не отличается от принципа работы релейного устройства. Единственное отличие заключается в применении электронных ключей вместо реле. Ключи представляют собой управляемые полупроводниковые вентили – тиристоры и симисторы. Каждый из них имеет управляющий электрод, подачей напряжения на который вентиль можно открыть. В этот момент и происходит коммутация обмоток и изменение напряжения на выходе стабилизатора. Стабилизатор отличается хорошими параметрами и высокой надёжностью. Широкому распространению мешает высокая стоимость прибора.

Стабилизатор двойного преобразования

Это устройство, называемое так же инверторный стабилизатор, по своей конструкции и техническим решениям, полностью отличается от всех других моделей. В нем отсутствует  трансформатор и элементы коммутации. В основу его работы положен принцип двойного преобразования напряжения. Из переменного напряжения в постоянное, и обратно в переменное.

Схема инверторного стабилизатора напряжения 220в состоит из следующих узлов:

  • Фильтр сетевых помех;
  • Корректор мощности – выпрямитель;
  • Блок конденсаторов;
  • Инвертор;
  • Узел микропроцессора.

Напряжение сети, пройдя через фильтр, поступает на корректор – выпрямитель, где осуществляется первое преобразование. В блоке конденсаторов запасается энергия, которая будет необходима при пониженном напряжении.

Обычно инвертор выполняется по схеме с использованием ШИМ контроллера. Дополнительное питание необходимо для питания микропроцессора, который управляет всей работой стабилизатора.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Это устройство отличается уникальными параметрами, поскольку инверторный стабилизатор не изменяет величину напряжения сети, а заново его генерирует. Это позволяет получить напряжение высокого качества со стабильной частотой.

На базе инверторного принципа может быть реализована схема регулируемого стабилизатора напряжения. В этом случае можно на схемном уровне рассчитать величину напряжения на входе, которая может быть практически любой, а стабилизатор будет выдавать 220В.

С этим читают:

Понравилась статья? Поделись с друзьями в соц сетях!

электронных, релейных, электромеханических и инверторных

Любое электрооборудование проектируется с расчётом на стабильные параметры сетевого напряжения. Это необходимо по двум причинам:
  1. Подключённое к сети устройство должно обеспечивать стабильные параметры тока на выходе в соответствии со своим целевым предназначением;
  2. Электрическая схема оборудования нуждается в защите от аномалий входного тока, которые являются основной причиной сбоев в работе и выходе из строя потребителей электроэнергии вследствие перегорания их токопроводящих контактов и элементов.

Чтобы питающее сетевое напряжение оставалось неизменным, используется специальное устройство – стабилизатор напряжения. Он осуществляет выравнивание характеристик входного тока и обеспечивает отключение потребителей в случае возникновения короткого замыкания или других критических сетевых аномалий.

Виды стабилизаторов напряжения

Принципиальная схема стабилизатора напряжения включает 2 основных элемента, функции которых заключаются в сравнении входных параметров тока с требуемыми и регулировкой выходных характеристик. При выборе стабилизатора необходимо учитывать его основные параметры, которые должны соответствовать свойствам электросети и особенностям питающихся от неё потребителей.

В список главных характеристик любого стабилизирующего устройства входят:

  • Точность стабилизации;
  • Скорость реакции на изменения параметров входного тока;
  • Эксплуатационная надёжность;
  • Защищённость от помех;
  • Срок эксплуатации;
  • Стоимость.

Существует несколько технических решений, позволяющих обеспечить стабильные параметры тока в сетях электропитания различного назначения. Наиболее широкое применение получили следующие виды стабилизаторов напряжения:

Сервоприводные. Обеспечивают высокую точность стабилизации и обладают неплохой устойчивостью к сетевым перегрузкам, включая короткое замыкание. Схема стабилизатора напряжения сервоприводного типа имеет существенный недостаток – низкую скорость реакции на изменения характеристик входного тока, вследствие их целесообразно использовать для защиты потребителей, питающихся от сетей, исключающих резкие скачки напряжения на входе.

Релейные. Характеризуются завидным быстродействием, однако не способны обеспечить высокую точность и качество выравнивания выходного напряжения, вследствие чего применяются для защиты электрооборудования малой мощности.

Электронные. Работают по тому же принципу, что и релейные, но вместо коммутационных реле функцию регулировки выходного напряжения выполняют электронные ключи – симисторы или тиристоры. Устройства этого типа отличаются высокой скоростью стабилизации и надёжной защитой от резких скачков входного напряжения. К недостаткам можно отнести сравнительно большую погрешность при выравнивании выходного тока и высокую стоимость.

Электромеханические. Представляют собой разновидность сервоприводных стабилизаторов. В отличии от последних, в оборудовании этого класса вместо графитовых щёток используются ролики, обеспечивающие защиту от перегрева, высокую перегрузочную способность и продолжительный срок службы системы. Главным минусом электромеханического стабилизатора является сравнительно высокая стоимость.

В продаже встречаются гибридные (с двойной релейной схемой), а также инверторные и широтно-импульсные (ШИМ) стабилизаторы. Они обеспечивают высокую скорость выравнивания выходного тока с небольшой погрешностью и могут работать с широким диапазоном входных параметров напряжения. Стабилизаторы с подмагничиванием и дискретным высокочастотным регулированием являются узкоспециализированными, вследствие чего широкого применения на практике не получили.

Сервоприводные стабилизаторы

Схема стабилизатора напряжения сервоприводного типа включает:

  • Блок защиты от перегрузки;
  • Автотрансформатор;
  • Серводвигатель с редуктором;
  • Блок управления

Сервоприводные стабилизаторы напряжения осуществляют выравнивание выходного тока посредством сервопривода, который приводит в движение коммутационные контакты – графитовые щётки. Перемещение последних в нужную позицию обмотки трансформатора осуществляется плавно без прерывания фазы и искажений синусоиды выходного напряжения. При скачках или проседаниях входного тока в пределах 10 В блок управления выдаёт команду серводвигателю, который двигает коммутационные контакты до достижения требуемых на выходе 220 В.

Схема регулируемого стабилизатора напряжения сервоприводного типа включает подвижные элементы, что снижает его надёжность и долговечность. Кроме того, устройства этого класса поддерживают достаточно узкий диапазон входного напряжения (150-260 В) и допустимой нагрузки (в пределах 250-500 Вт). В то же время, работают они практически бесшумно и обеспечивают погрешность выравнивания параметров тока не более 2-3%.

Стабилизаторы релейного типа

Принцип работы устройств стабилизации релейного типа основан на ступенчатом регулировании напряжения. Осуществляется оно посредством силовых реле, которые выполняют коммутацию секций на вторичной обмотке автотрансформатора после вычисления необходимого числа трансформации контролирующим входные и выходные параметры тока процессором.

К основным достоинствам релейных стабилизаторов относят:

  1. Компактные габариты и небольшой вес;
  2. Широкий диапазон выравнивания;
  3. Возможность применения при температурном режиме -20…+40°C;
  4. Низкую стоимость.

Главные минусы этого оборудования – малая перегрузочная способность и снижение скорости стабилизации при увеличении точности последней.

Электронные стабилизаторы напряжения

Электронные устройства стабилизации работают по принципу ступенчатого регулирования напряжения посредством автоматической коммутации участков вторичной обмотки трансформатора, которая осуществляется силовыми электронными ключами, управляемыми процессорным блоком.

Отсутствие открытой коммутации исключает возникновение искр и окисление токопроводящих контактов схемы стабилизатора при избыточном токе на входе. Кроме того, оборудование этого класса обеспечивает малую инерционность срабатывания, отличается высокой конструктивной надёжностью и полностью бесшумной работой.

Можно собрать электронный стабилизатор напряжения 220В своими руками. Стоимость такое устройство будет иметь гораздо меньшую, чем произведённое на заводе, обеспечивая простоту в обслуживании. Основным недостатком самодельных решений является их низкая надёжность.

Инверторные стабилизирующие устройства

Всё более популярными становятся устройства стабилизации, работающие по принципу двойного преобразования напряжения. Они не имеют подвижных элементов и обеспечивают куда более высокое качество выравнивания тока, чем классические сервоприводные, релейные и электронные.

Схема инверторного стабилизатора напряжения 220В включает:

  • Входной частотный фильтр;
  • Выпрямитель напряжения;
  • Корректор коэффициента мощности;
  • Накопительный конденсатор;
  • Преобразователь постоянного напряжения в переменное (инвертор) с требуемыми на выходе устройства характеристиками.
  • Микроконтроллер.

Входной ток проходит частотную фильтрацию, после чего выпрямитель превращает его в постоянный с правильной синусоидой. В результате значительно возрастает коэффициент мощности. Постоянное напряжение заряжает конденсаторы, с которых ток поступает на инвертор, где выравниваются его частота и напряжение до требуемых 50 Гц и 220 В соответственно.

Инверторные устройства стабилизации обеспечивают КПД выше 90% и практически нулевую инерционность, поддерживая широкий спектр входных параметров тока.

Схема подключения стабилизатора напряжения не представляет особой сложности. Очень важно при этом грамотно выбрать сечение кабеля:

  • Чем выше мощность устройства, тем большей должна быть площадь сечения;
  • При низком уровне входного напряжения сила тока будет большой, поэтому для сетей с преобладающими проседаниями напряжения следует выбирать сечение кабеля с запасом.

И главное: при подключении стабилизатора любого типа требуется неукоснительно соблюдать правила электробезопасности и рекомендации производителя, указанные в паспорте устройства.

Стабилизаторы напряжения: классификация, схемы, параметры, достоинства

Параметры стабилизаторов напряжения

Важнейшими параметрами стабилизатора напряжения являются коэффициент стабилизации Kст, выходное сопротивление Rвых и коэффициент полезного действия η.

Коэффициент стабилизации определяют из выражения Kст= [ ∆uвх/ uвх] / [ ∆uвых/ uвых]

где uвх, uвых — постоянные напряжения соответственно на входе и выходе стабилизатора; ∆uвх — изменение напряжения uвх; ∆uвых — изменение напряжения uвых, соответствующее изменению напряжения ∆uвх.

Чем больше коэффициент стабилизации, тем меньше изменяется выходное напряжение при изменении входного. У простейших стабилизаторов величина Kст составляет единицы, а у более сложных — сотни и тысячи.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

Таким образом, коэффициент стабилизации — это отношение относительного изменения напряжения на входе к соответствующему относительному изменению напряжения на выходе стабилизатора.

Выходное сопротивление стабилизатора определяется выражением Rвых= | ∆uвых/ ∆iвых|

где ∆uвых— изменение постоянного напряжения на выходе стабилизатора; ∆iвых— изменение постоянного выходного тока стабилизатора, которое вызвало изменение выходного напряжения.

Выходное сопротивление стабилизатора является величиной, аналогичной выходному сопротивлению выпрямителя с фильтром. Чем меньше выходное сопротивление, тем меньше изменяется выходное напряжение при изменении тока нагрузки. У простейших стабилизаторов величина Rвых составляет единицы Ом, а у более совершенных — сотые и тысячные доли Ома. Необходимо отметить, что стабилизатор напряжения обычно резко уменьшает пульсации напряжения.

Коэффициент полезного действия стабилизатора ηст — это отношение мощности, отдаваемой в нагрузку Рн, к мощности, потребляемой от входного источника напряжения Рвх: ηст = Рн / Рвх

Традиционно стабилизаторы разделяют на параметрические и компенсационные.

Интересное видео о стабилизаторах напряжения:

Параметрические стабилизаторы

Являются простейшими устройствами, в которых малые изменения выходного напряжения достигаются за счет применения электронных приборов с двумя выводами, характеризующихся ярко выраженной нелинейностью вольт-амперной характеристики. Рассмотрим схему параметрического стабилизатора на основе стабилитрона (рис. 2.82).
Проанализируем данную схему (рис. 2.82, а), для чего вначале ее преобразуем, используя теорему об эквивалентном генераторе (рис. 2.82, б). Проанализируем графически работу схемы, построив на вольт-амперной характеристике стабилитрона линии нагрузки для различных значений эквивалентного напряжения, соответствующих различным значениям входного напряжения (рис. 2.82, в).
Из графических построений очевидно, что при значительном изменении эквивалентного напряжения uэ (на ∆uэ), а значит, и входного напряжения uвх, выходное напряжение изменяется на незначительную величину ∆uвых.

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Задать вопрос

Причем, чем меньше дифференциальное сопротивление стабилитрона (т. е. чем более горизонтально идет характеристика стабилитрона), тем меньше ∆uвых.

Определим основные параметры такого стабилизатора, для чего в исходной схеме стабилитрон заменим его эквивалентной схемой и введем во входную цепь (рис. 2.82, г) источник напряжения, соответствующий изменению входного напряжения ∆uвх (на схеме пунктир):

Rвых= rд|| R0≈ rд, т.к. R0>> rд ηст = ( uвых· Iн) / ( uвх· Iвх) = ( uвых· Iн) / [ uвх( Iн + Iвх) ].

Kст= ( ∆uвх/ uвх) : ( ∆uвых/ uвых) Так как обычно Rн>> rд Следовательно, Kст≈ uвых / uвх· [ ( rд+ R0) / rд]

Обычно параметрические стабилизаторы используют для нагрузок от нескольких единиц до десятков миллиампер. Наиболее часто они используются как источники опорного напряжения в компенсационных стабилизаторах напряжения.

Компенсационные стабилизаторы

Представляют собой замкнутые системы автоматического регулирования. Характерными элементами компенсационного стабилизатора являются источник опорного (эталонного) напряжения (ИОН), сравнивающий и усиливающий элемент (СУЭ) и регулирующий элемент (РЭ).

Напряжение на выходе стабилизатора или некоторая часть этого напряжения постоянно сравнивается с эталонным напряжением.

В зависимости от их соотношения сравнивающим и усиливающим элементом вырабатывается управляющий сигнал для регулирующего элемента, изменяющий его режим работы таким образом, чтобы напряжение на выходе стабилизатора оставалось практически постоянным.

В качестве ИОН обычно используют ту или иную электронную цепь на основе стабилитрона, в качестве СУЭ часто используют операционный усилитель, а в качестве РЭ — биполярный или полевой транзистор.

Чаще всего регулирующий элемент включают последовательно с нагрузкой. В этом случае стабилизатор называют последовательным (рис. 2.83, а).


Иногда регулирующий элемент включают параллельно нагрузке, и тогда стабилизатор называют параллельным (рис. 2.83, б. Здесь СУЭ и ИОН с целью упрощения не показаны). В параллельном стабилизаторе используется балластное сопротивление Rб, включаемое последовательно с нагрузкой.

В зависимости от режима работы регулирующего элемента стабилизаторы разделяют на непрерывные и импульсные (ключевые, релейные).

В непрерывных стабилизаторах регулирующий элемент (транзистор) работает в активном режиме, а в импульсных — в импульсном.

Рассмотрим типичную принципиальную схему непрерывного стабилизатора (рис. 2.84, а).
Эта схема соответствует приведенной выше структурной схеме последовательного стабилизатора. Для того чтобы выполнить наиболее просто анализ этой схемы на основе тех допущений, которые были рассмотрены при изучении операционного усилителя,изобразим эту схему по-другому. При этом цепи питания операционного усилителя для упрощения рисунка изображать не будем.
Из схемы (рис. 2.84, б) очевидно, что на элементах R2, R3, DA и VT построен неинвертирующий усилитель на основе ОУ с выходным каскадом в виде эмиттерного повторителя на транзисторе VT, а входным напряжением для него является выходное напряжение параметрического стабилизатора напряжения на элементах R1 и VD. В соответствии с указанными выше допущениями получаем:

uR3= uст, т.е. iR3· R3= uст

uR2 = uR3 – uвых

iR2 = − iR3 = − uст/ R3

Подставляя выражение для iR2 в предыдущее уравнение, получим − uст/ R3· R2= uст – uвых. Следовательно, uвых = uст· ( 1 + R2/ R3)

Последнее выражение в точности повторяет соответствующие выражения для неинвертирующего усилителя (входным напряжением является напряжение uст).

Полезно отметить, что ООС охватывает два каскада — на операционном усилителе и на транзисторе. Рассматриваемая схема является убедительным примером, демонстрирующим преимущество общей отрицательной обратной связи по сравнению с местной.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

Основным недостатком стабилизаторов с непрерывным регулированием является невысокий КПД, поскольку значительный расход мощности имеет место в регулирующем элементе, так как через него проходит весь ток нагрузки, а падение напряжения на нем равно разности между входным и выходным напряжениями стабилизатора.

В конце 60-х годов стали выпускать интегральные микросхемы компенсационных стабилизаторов напряжения с непрерывным регулированием (серия К142ЕН). В эту серию входят стабилизаторы с фиксированным выходным напряжением, с регулируемым выходным напряжением и двухполярным и входным и выходным напряжениями. В тех случаях, когда через нагрузку необходимо пропускать ток, превышающий предельно допустимые значения интегральных стабилизаторов, микросхему дополняют внешними регулирующими транзисторами.

Некоторые параметры интегральных стабилизаторов приведены в табл. 2.1, а вариант подключения к стабилизатору К142ЕН1 внешних элементов — на рис. 2.85.
Резистор R предназначен для срабатывания защиты по току, а R1 — для регулирования выходного напряжения. Микросхемы К142УН5, ЕН6, ЕН8 являются функционально законченными стабилизаторами с фиксированным выходным напряжением, но не требуют подключения внешних элементов.

Импульсные стабилизаторы напряжения в настоящее время получили распространение не меньшее, чем непрерывные стабилизаторы.

Благодаря применению ключевого режима работы силовых элементов таких стабилизаторов, даже при значительной разнице в уровнях входных и выходных напряжений можно получить КПД, равный 70 − 80 %, в то время как у непрерывных стабилизаторов он составляет 30 − 50%.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

В силовом элементе, работающем в ключевом режиме, средняя за период коммутации мощность, рассеиваемая в нем, значительно меньше, чем в непрерывном стабилизаторе, так как хотя в замкнутом состоянии ток, протекающий через силовой элемент, максимален, однако падение напряжения на нем близко к нулю, а в разомкнутом состоянии ток, протекающий через него, равен нулю, хотя напряжение максимально. Таким образом, в обоих случаях рассеиваемая мощность незначительна и близка к нулю.

Малые потери в силовых элементах приводят к уменьшению или даже исключению охлаждающих радиаторов, что значительно уменьшает массогабаритные показатели. Кроме того, использование импульсного стабилизатора позволяет в ряде случаев исключить из схемы силовой трансформатор, работающий на частоте 50 Гц, что также улучшает показатели стабилизаторов.

К недостаткам импульсных источников питания относят наличие пульсаций выходного напряжения.

Рассмотрим импульсный последовательный стабилизатор напряжения (рис. 2.86).
Ключ S периодически включается и выключается схемой управления (СУ) в зависимости от значения напряжения на нагрузке. Напряжение на выходе регулируют, изменяя отношение tвкл / tвыкл, где tвкл, tвыкл — длительности отрезков времени, на которых ключ находится соответственно во включенном и выключенном состояниях. Чем больше это отношение, тем больше напряжение на выходе.

В качестве ключа S часто используют биполярный или полевой транзистор.

Диод обеспечивает протекание тока катушки индуктивности тогда, когда ключ выключен и, следовательно, исключает появление опасных выбросов напряжения на ключе в момент коммутации. LC-фильтр снижает пульсации напряжения на выходе.

Ещё одно интересное видео о стабилизаторах:

7 схем импульсных стабилизаторов напряжения на транзисторах

Схемы самодельных импульсных DC-DC преобразователей напряжения на транзисторах, семь примеров.

Благодаря высокому КПД импульсные стабилизаторы напряжения получают в последнее время все более широкое распространение, хотя они, как правило, сложнее и содержат большее число элементов.

Поскольку в тепловую энергию преобразуется лишь малая доля подводимой к импульсному стабилизатору энергии, его выходные транзисторы меньше нагреваются, следовательно, за счет снижения площади теплоотводов снижаются масса и размеры устройства.

Ощутимым недостатком импульсных стабилизаторов является наличие на выходе высокочастотных пульсаций, что заметно сужает область их практического использования — чаще всего импульсные стабилизаторы используют для питания устройств на цифровых микросхемах.

Понижающий импульсный стабилизатор напряжения

Стабилизатор с выходным напряжением, меньшим входного, можно собрать на трех транзисторах (рис. 1), два из которых (VT1, VT2) образуют ключевой регулирующий элемент, а третий (ѴТЗ) является усилителем сигнала рассогласования.

Рис. 1. Схема импульсного стабилизатора напряжения с КПД 84%.

Устройство работает в автоколебательном режиме. Напряжение положительной обратной связи с коллектора составного транзистора ѴТ1 через конденсатор С2 поступает в цепь базы транзистора ѴТ2.

Элементом сравнения и усилителем сигнала рассогласования является каскад на транзисторе ѴТЗ. Его эмиттер подключен к источнику опорного напряжения — стабилитрону VD2, а база — к делителю выходного напряжения R5 — R7.

В импульсных стабилизаторах регулирующий элемент работает в ключевом режиме, поэтому выходное напряжение регулируется изменением скважности работы ключа.

Включением/выключением транзистора VT1 по сигналу транзистора ѴТЗ управляет транзистор ѴТ2. В моменты, когда транзистор ѴТ1 открыт, в дросселе L1, благодаря протеканию тока нагрузки, запасается электромагнитная энергия.

После закрывания транзистора запасенная энергия через диод VD1 отдается в нагрузку. Пульсации выходного напряжения стабилизатора сглаживаются фильтром L1, C3.

Характеристики стабилизатора целиком определяются свойствами транзистора ѴТ1 и диода VD1, быстродействие которых должно быть максимальным. При входном напряжении 24 В, выходном — 15 В и токе нагрузки 1 А измеренное значение КПД было равно 84%.

Дроссель L1 имеет 100 витков провода диаметром 0,63 мм на кольце К26х16х12 из феррита с магнитной проницаемостью 100. Его индуктивность при токе подмагничивания 1 А — около 1 мГн.

Step-down DC-DC преобразователь напряжения на +5В

Схема простого импульсного стабилизатора показана на рис. 2. Дроссели L1 и L2 намотаны на пластмассовых каркасах, помещенных в броневые магнитопроводы Б22 из феррита М2000НМ.

Дроссель L1 содержит 18 витков жгута из 7 проводов ПЭВ-1 0,35. Между чашками его магнитопровода вложена прокладка толщиной 0,8 мм.

Активное сопротивление обмотки дросселя L1 27 мОм. Дроссель L2 имеет 9 витков жгута из 10 проводов ПЭВ-1 0,35. Зазор между его чашками — 0,2 мм, активное сопротивление обмотки — 13 мОм.

Прокладки можно изготовить из жесткого теплостойкого материала — текстолита, слюды, электрокартона. Винт, скрепляющий чашки магнитопровода, должен быть из немагнитного материала.

Рис. 2. Схема простого ключевого стабилизатора напряжения с КПД 60%.

Для налаживания стабилизатора к его выходу подключают нагрузку сопротивлением 5…7 Ом и мощностью 10 Вт. Подбором резистора R7 устанавливают номинальное выходное напряжение, затем увеличивают ток нагрузки до 3 А и, подбирая величину конденсатора С4, устанавливают такую частоту генерации (примерно 18…20 кГц), при которой высокочастотные выбросы напряжения на конденсаторе C3 минимальны.

Выходное напряжение стабилизатора можно довести до 8…10В, увеличив величину резистора R7 и установив новое значение рабочей частоты. При этом мощность, рассеиваемая на транзисторе ѴТЗ, также увеличится.

В схемах импульсных стабилизаторов желательно использовать электролитические конденсаторы К52-1. Необходимую величину емкости получают параллельным включением конденсаторов.

Основные технические характеристики:

  • Входное напряжение, В — 15…25.
  • Выходное напряжение, В — 5.
  • Максимальный ток нагрузки, А — 4.
  • Пульсации выходного напряжения при токе нагрузки 4 А во всем диапазоне входных напряжений, мВ, не более — 50.
  • КПД, %, не ниже — 60.
  • Рабочая частота при входном напряжении 20 б и токе нагрузки 3А, кГц—20.

Улучшенный вариант импульсного стабилизатора на +5В

В сравнении с предыдущим вариантом импульсного стабилизатора в новой конструкции А. А. Миронова (рис. 3) усовершенствованы и улучшены такие его характеристики, как КПД, стабильность выходного напряжения, длительность и характер переходного процесса при воздействии импульсной нагрузки.

Рис. 3. Схема импульсного стабилизатора напряжения.

Оказалось, что при работе прототипа (рис. 2) возникает так называемый сквозной ток через составной ключевой транзистор. Этот ток появляется в те моменты, когда по сигналу узла сравнения ключевой транзистор открывается, а коммутирующий диод еще не успел закрыться. Наличие такого тока вызывает дополнительные потери на нагревание транзистора и диода и уменьшает КПД устройства.

Еще один недостаток — значительная пульсация выходного напряжения при токе нагрузки, близком к предельному. Для борьбы с пульсациями в стабилизатор (рис. 2) был введен дополнительный выходной LC-фильтр (L2, С5).

Уменьшить нестабильность выходного напряжения от изменения тока нагрузки можно только уменьшением активного сопротивления дросселя L2.

Улучшение динамики переходного процесса (в частности, уменьшение его длительности) связано с необходимостью уменьшения индуктивности дросселя, но при этом неизбежно увеличится пульсация выходного напряжения.

Поэтому оказалось целесообразным исключить этот выходной фильтр, а емкость конденсатора С2 увеличить в 5… 10 раз (параллельным соединением нескольких конденсаторов в батарею).

Цепь R2, С2 в исходном стабилизаторе (рис. 6.2) практически не изменяет длительности спада выходного тока, поэтому ее можно удалить (замкнуть резистор R2), а сопротивление резистора R3 увеличить до 820 Ом.

Но тогда при увеличении входного напряжения с 15 6 до 25 6 ток, протекающий через резистор R3 (в исходном устройстве), будет увеличиваться в 1,7 раза, а мощность рассеивания — в 3 раза (до 0,7 Вт).

Подключением нижнего по схеме вывода резистора R3 (на схеме доработанного стабилизатора это резистор R2) к плюсовому выводу конденсатора С2 этот эффект можно ослабить, но при этом сопротивление R2 (рис. 3) должно быть уменьшено до 620 Ом.

Один из эффективных путей борьбы со сквозным током — увеличение времени нарастания тока через открывшийся ключевой транзистор.

Тогда при полном открывании транзистора ток через диод VD1 уменьшится почти до нуля. Этого можно достигнуть, если форма тока через ключевой транзистор будет близка к треугольной.

Как показывает расчет, для получения такой формы тока индуктивность накопительного дросселя L1 не должна превышать 30 мкГч.

Еще один путь — применение более быстродействующего коммутирующего диода VD1, например, КД219Б (с барьером Шотки). У таких диодов выше быстродействие и меньше падение напряжения при одном и том же значении прямого тока по сравнению с обычными кремниевыми высокочастотными диодами. Конденсатор С2 типа К52-1.

Улучшение параметров устройства может быть получено и при изменении режима работы ключевого транзистора. Особенность работы мощного транзистора ѴТЗ в исходном и улучшенном стабилизаторах состоит в том, что он работает в активном режиме, а не в насыщенном, и поэтому имеет высокое значение коэффициента передачи тока и быстро закрывается.

Однако из-за повышенного напряжения на нем в открытом состоянии рассеиваемая мощность в 1,5…2 раза превышает минимально достижимое значение.

Уменьшить напряжение на ключевом транзисторе можно подачей положительного (относительно плюсового провода питания) напряжения смещения на эмиттер транзистора ѴТ2 (см. рис. 3).

Необходимую величину напряжения смещения подбирают при налаживании стабилизатора. Если он питается от выпрямителя, подключенного к сетевому трансформатору, то для получения напряжения смещения можно предусмотреть отдельную обмотку на трансформаторе. Однако при этом напряжение смещения будет изменяться вместе с сетевым.

Схема преобразователя со стабильным напряжением смещения

Для получения стабильного напряжения смещения стабилизатор надо доработать (рис. 4), а дроссель превратить в трансформатор Т1, намотав дополнительную обмотку II. Когда ключевой транзистор закрыт, а диод VD1 открыт, напряжение на обмотке I определяется из выражения: U1=UBыx + U VD1.

Поскольку напряжение на выходе и на диоде в это время меняется незначительно, то независимо от значения входного напряжения на обмотке II напряжение практически стабильно. После выпрямления его подают на эмиттер транзистора VT2 (и VT1).

Рис. 4. Схема модифицированного импульсного стабилизатора напряжения.

Потери на нагрев снизились в первом варианте доработанного стабилизатора на 14,7%, а во втором — на 24,2%, что позволяет им работать при токе нагрузки до 4 А без установки ключевого транзистора на теплоотвод.

В стабилизаторе варианта 1 (рис. 3) дроссель L1 содержит 11 витков, намотанных жгутом из восьми проводов ПЭВ-1 0,35. Обмотку помещают в броневой магнитопровод Б22 из феррита 2000НМ.

Между чашками нужно заложить прокладку из текстолита толщиной 0,25 мм. В стабилизаторе варианта 2 (рис. 4) трансформатор Т1 образован намоткой поверх катушки дросселя L1 двух витков провода ПЭВ-1 0,35.

Вместо германиевого диода Д310 можно использовать кремниевый, например, КД212А или КД212Б, при этом число витков обмотки II нужно увеличить до трех.

DC стабилизатор напряжения с ШИМ

Стабилизатор с широтно-импульсным управлением (рис. 5) по принципу действия близок к стабилизатору, описанному в, но, в отличие от него, имеет две цепи обратной связи, соединенные таким образом, что ключевой элемент закрывается при превышении напряжения на нагрузке или увеличении тока, потребляемого нагрузкой.

При подаче питания на вход устройства ток, текущий через резистор R3, открывает ключевой элемент, образованный транзисторами VT.1, VT2, в результате чего в цепи транзистор VT1 — дроссель L1 — нагрузка — резистор R9 возникает ток. Происходит заряд конденсатора С4 и накопление энергии дросселем L1.

Если сопротивление нагрузки достаточно большое, то напряжение на ней достигает 12 Б, и стабилитрон VD4 открывается. Это приводит к открыванию транзисторов VT5, ѴТЗ и закрыванию ключевого элемента, а благодаря наличию диода VD3 дроссель L1 отдает накопленную энергию нагрузке.

Рис. 5. Схема стабилизатора с широтно-импульсным управлением с КПД до 89%.

Технические характеристики стабилизатора:

  • Входное напряжение — 15…25 В.
  • Выходное напряжение — 12 В.
  • Номинальный ток загрузки — 1 А.
  • Пульсации выходного напряжения при токе нагрузки 1 А — 0,2 В. КПД (при UBX =18 6, Ін=1 А) — 89%.
  • Потребляемый ток при UBX=18 В в режиме замыкания цепи нагрузки — 0,4 А.
  • Выходной ток короткого замыкания (при UBX =18 6) — 2,5 А.

По мере уменьшения тока через дроссель и разряда конденсатора С4 напряжение на нагрузке также уменьшится, что приведет к закрыванию транзисторов VT5, ѴТЗ и открыванию ключевого элемента. Далее процесс работы стабилизатора повторяется.

Конденсатор С3, снижающий частоту колебательного процесса, повышает эффективность стабилизатора.

При малом сопротивлении нагрузки колебательный процесс в стабилизаторе происходит иначе. Нарастание тока нагрузки приводит к увеличению падения напряжения на резисторе R9, открыванию транзистора ѴТ4 и закрыванию ключевого элемента.

Далее процесс протекает аналогично описанному выше. Диоды VD1 и VD2 способствуют более резкому переходу устройства из режима стабилизации напряжения в режим ограничения тока.

Во всех режимах работы стабилизатора потребляемый им ток меньше тока нагрузки. Транзистор ѴТ1 следует установить на теплоотводе размерами 40×25 мм.

Дроссель L1 представляет собой 20 витков жгута из трех проводов ПЭВ-2 0,47, помещенных в чашечный магнитопровод Б22 из феррита 1500НМЗ. Магнитопровод имеет зазор толщиной 0,5 мм из немагнитного материала.

Стабилизатор несложно перестроить на другое выходное напряжение и ток нагрузки. Выходное напряжение устанавливают выбором типа стабилитрона VD4, а максимальный ток нагрузки — пропорциональным изменением сопротивления резистора R9 или подачей на базу транзистора ѴТ4 небольшого тока от отдельного параметрического стабилизатора через переменный резистор.

Для снижения уровня пульсаций выходного напряжения целесообразно применить LC-фильтр, аналогичный используемому в схеме на рис. 2.

Импульсный стабилизатор напряжения с КПД преобразования 69…72%

Импульсный стабилизатор напряжения (рис. 6) состоит из узла запуска (R3, VD1, ѴТ1, VD2), источника опорного напряжения и устройства сравнения (DD1.1, R1), усилителя постоянного тока (ѴТ2, DD1.2, ѴТ5), транзисторного ключа (ѴТЗ, ѴТ4), индуктивного накопителя энергии с коммутирующим диодом (VD3, L2) и фильтров — входного (L1, С1, С2) и выходного (С4, С5, L3, С6). Частота переключения индуктивного накопителя энергии в зависимости от тока нагрузки находится в пределах 1,3…48 кГц.

Рис. 6. Схема импульсного стабилизатора напряжения с КПД преобразования 69…72%.

Все катушки индуктивности L1 — L3 одинаковы и намотаны в броневых магнитопроводах Б20 из феррита 2000НМ с зазором между чашками около 0,2 мм.

Обмотки содержат по 20 витков жгута из четырех проводов ПЭВ-2 0,41. Можно применить также кольцевые ферритовые магнитопроводы с зазором.

Номинальное выходное напряжение 5 В при изменении входного от 8 до 60 б и КПД преобразования 69…72%. Коэффициент стабилизации — 500.

Амплитуда пульсаций выходного напряжения при токе нагрузки 0,7 А — не более 5 мВ. Выходное сопротивление — 20 мОм. Максимальный ток нагрузки (без теплоотводов для транзистора VT4 и диода VD3) — 2 А.

Импульсный стабилизатор напряжения на 12В

Импульсный стабилизатор напряжения (рис. 6.7) при входном напряжении 20…25 В обеспечивает на выходе стабильное напряжение 12 В при токе нагрузки 1,2 А.

Пульсации на выходе до 2 мВ. Благодаря высокому КПД в устройстве не используются теплоотводы. Индуктивность дросселя L1 — 470 мкГч.

Рис. 7. Схема импульсного стабилизатора напряжения с малыми пульсациями.

Аналоги транзисторов: ВС547 — КТ3102А] ВС548В — КТ3102В. Приблизительные аналоги транзисторов ВС807 — КТ3107; BD244 — КТ816.

Источник: Шустов М. А. — Практическая схемотехника. Преобразователи напряжения.

Схема электрическая стабилизатора

Разработчики электрических и электронных устройств, в процессе их создания, исходят из того, что будущее устройство будет работать в условиях стабильного питающего напряжения. Это необходимо для того, чтобы электрическая схема электронного устройства, во-первых, обеспечивала стабильные выходные параметры в соответствии со своим целевым назначением, а во-вторых, стабильность питающего напряжения защищает устройство от скачков, чреватых слишком большими потребляемыми токами и перегоранием электрических элементов устройства. Для решения задачи обеспечения неизменности питающего напряжения применяют какой-либо вариант стабилизатора напряжения. По характеру потребляемого устройством тока различают стабилизаторы переменного и постоянного напряжения.

Стабилизаторы переменного напряжения

Стабилизаторы переменного напряжения применяют, если отклонения напряжения в электрической сети от номинального значения превышают 10% . Такая норма выбрана исходя из того, что потребители переменного тока при таких отклонениях сохраняют свою работоспособность весь срок эксплуатации. В современной электронной технике, как правило, для решения задачи стабильного электропитания используют импульсный блок питания, при котором стабилизатор переменного напряжения не нужен. А вот в холодильниках, микроволновых печах, кондиционерах, насосах и т.п. требуется внешняя стабилизация питающего переменного напряжении. В таких случаях чаще всего используют стабилизатор одного из трёх типов: электромеханический, главным звеном которого является регулируемый автотрансформатор с управляемым электрическим приводом, релейно- трансформаторный, на базе мощного трансформатора, имеющего несколько отводов в первичной обмотке, и коммутатора из электромагнитных реле, симисторов, тиристоров или мощных ключевых транзисторов, а также чисто электронный. Широко распространенные в прошлом веке феррорезонансные стабилизаторы в настоящее время практически не используются из-за наличия многочисленных недостатков.

Для подключения потребителей к сети переменного тока 50 Гц применяют стабилизатор напряжения на 220 В. Электрическая схема стабилизатора напряжения такого типа изображена на следующем рисунке.

Трансформатор А1 повышает напряжение в сети до уровня, достаточного для стабилизации выходного напряжения при низком входном напряжении. Регулирующий элемент РЭ осуществляет изменение выходного напряжения. На выходе управляющий элемент УЭ измеряет значение напряжения на нагрузке и выдает управляющий сигнал для его корректировки, если это необходимо.

Электромеханические стабилизаторы

В основе такого стабилизатора — использование бытового регулируемого автотрансформатора или лабораторного ЛАТРа. Применение автотрансформатора обеспечивает более высокий КПД установки. Рукоятка регулирования автотрансформатора удаляется, а на корпусе вместо нее соосно устанавливают небольшой двигатель с редуктором, обеспечивающим усилие вращения достаточное для поворота бегунка в автотрансформаторе. Необходимая и достаточная скорость вращения – около 1 оборота за 10 — 20 сек. Этим требованиям удовлетворяет двигатель типа РД-09, который раньше применялся в самопишущих приборах. Управляет двигателем электронная схема. При изменении сетевого напряжения в пределах +- 10 вольт выдаётся команда на двигатель, который поворачивает бегунок до достижения на выходе напряжения 220 В.

Примеры схем электромеханических стабилизаторов приведены ниже: 

Электрическая схема стабилизатора напряжения с использованием логических микросхем и релейного управления электроприводом

Электромеханический стабилизатор на основе операционного усилителя.

Достоинством подобных стабилизаторов является простота реализации и высокая точность стабилизации напряжения на выходе. К недостаткам следует отнести невысокую надёжность из — за присутствия механических подвижных элементов, относительно малую допустимую мощность нагрузки ( в пределах 250 … 500 Вт), малую распространенность в наше время автотрансформаторов и необходимых электродвигателей.

Релейно — трансформаторные стабилизаторы

Релейно — трансформаторный стабилизатор является более популярным в силу простоты реализации конструкции, применения распространенных элементов и возможности получения значительной выходной мощности (до нескольких киловатт), значительно превышающей мощность примененного силового трансформатора. На выбор его мощности влияет минимальное напряжение в конкретной сети переменного тока. Если, к примеру, оно не меньше 180 В, то от трансформатора потребуется обеспечение вольтодобавки 40 В, что в 5,5 раз меньше номинального напряжения в сети. Выходная мощность у стабилизатора во столько же раз будет больше, чем мощность силового трансформатора (если не учитывать КПД трансформатора и максимально допустимый ток через коммутирующие элементы). Число ступеней изменения напряжения, как правило, устанавливают в пределах 3 … 6 ступеней, что в большинстве случаев обеспечивает приемлемую точность стабилизации напряжения на выходе. При вычислении количества витков обмоток в трансформаторе для каждой ступени напряжение в сети принимается равным уровню срабатывания коммутирующего элемента. Как правило, в качестве коммутирующих элементов используют электромагнитные реле — схема выходит достаточно элементарной и не вызывающей затруднений при повторении. Недостатком такого стабилизатора является образование дуги на контактах реле в процессе коммутации, что разрушает контакты реле. В более сложных вариантах схем переключение реле производят в моменты перехода полуволны напряжения через нулевое значение, что предотвращает возникновение искры, правда при условии использования быстродействующих реле или коммутации на спаде предшествующей полуволны. Использование в качестве коммутирующих элементов тиристоров, симисторов или других бесконтактных элементов надёжность схемы резко возрастает, но усложняется из-за необходимости обеспечения гальванической развязки между цепями управляющих электродов и модулем управления. Для этого применяют оптронные элементы или разделительные импульсные трансформаторы. Ниже приведена принципиальная схема релейно — трансформаторного стабилизатора:

Схема цифрового релейно — трансформаторного стабилизатора на электромагнитных реле

Электронные стабилизаторы

Электронные стабилизаторы имеют, как правило, небольшую мощность (до 100 Вт) и необходимую для работы многих электронных устройств высокую стабильность выходного напряжения. Они обычно строятся в виде упрощённого усилителя низкой частоты, имеющего достаточно большой запас изменения уровня питающего напряжения и мощности. На его вход от электронного регулятора напряжения подаётся сигнал синусоидальной формы с частотой 50 Гц от вспомогательного генератора. Можно использовать понижающую обмотку силового трансформатора. Выход усилителя подключен к повышающему до 220 В трансформатору. Схема имеет инерционную отрицательную обратную связь по значению выходного напряжения, что гарантирует стабильность выходного напряжения с неискажённой формой. Для достижения мощности на уровне нескольких сотен ватт используют другие методы. Обычно применяют мощный преобразователь постоянного тока в переменный на основе использования нового вида полупроводников — так называемых IGBT транзисторо.

Эти коммутирующие элементы в ключевом режиме могут пропустить ток в несколько сотен ампер при максимально допустимом напряжении более 1000 В. Для управления такими транзисторами используются специальные виды микроконтроллеров с векторным управлением. На затвор транзистора с частотой в несколько килогерц подают импульсы с переменной шириной, которая меняется по программе, введенной в микроконтроллер. По выходу такой преобразователь нагружен на соответствующий трансформатор. Ток в цепи трансформатора меняется по синусоиде. В то же время напряжение сохраняет форму исходных прямоугольных импульсов с разной шириной. Такая схема используется в мощных источниках гарантированного питания, используемых для бесперебойной работы компьютеров. Электрическая схема стабилизатора напряжения такого типа очень сложна и практически недоступна для самостоятельного воспроизведения.

Упрощенные электронные стабилизаторы напряжения

Такие устройства применяют, когда напряжение бытовой сети (особенно в условиях сельских населенных пунктов) нередко оказывается пониженным, практически никогда не обеспечивая номинальных 220 В.

В такой ситуации и холодильник работает с перебоями и риском выхода из строя, и освещение оказывается тусклым, и вода в электрочайнике долго не может закипеть. Мощности старенького, еще советских времен, стабилизатора напряжения, рассчитанного на питание телевизора, как правило, недостаточна для всех остальных бытовых электропотребителей, да и значение напряжения в сети часто падает ниже уровня, допустимого для подобного стабилизатора.

Существует простой метод для повышения напряжение в сети, путем использования трансформатора мощностью значительно меньшей мощности применяемой нагрузки. Первичная обмотка трансформатора включается непосредственно в сеть, а нагрузка подключается последовательно к вторичной (понижающей) обмотке трансформатора. При правильной фазировке напряжение на нагрузке окажется равным сумме снимаемого с трансформатора и сетевого напряжения.

Электрическая схема стабилизатора напряжения, действующего по этому несложному принципу, приведена рисунке ниже. Когда стоящий в диагонали диодного моста VD2 транзистор VT2 (полевой) закрыт, обмотка I (являющаяся первичной) трансформатора Т1 к сети не подключена. Напряжение на включенной нагрузке почти равно сетевому за минусом небольшого напряжения на обмотке II (вторичная) трансформатора Т1. При открытии полевого транзистора первичная обмотка трансформатора окажется замкнутой, а к нагрузке будет приложена сумма сетевого и напряжения вторичной обмотки.

Схема электронного стабилизатора напряжения

Напряжение с нагрузки, через трансформатор Т2 и диодный мост VD1 подается на транзистор VT1. Регулятор подстроечного потенциометра R1 должен быть выставлен в положение, обеспечивающее открытие транзистора VT1 и закрытие VT2, когда напряжение на нагрузке превышает номинальное (220 В). Если напряжение меньше 220 вольт транзистор VT1 закроется , a VT2 — откроется. Полученная таким способом отрицательная обратная связь сохраняет напряжение на нагрузке примерно равным номинальному значению.

Выпрямленное напряжение с моста VD1 используется и для запитки коллекторной цепи VT1 (через цепь интегрального стабилизатора DA1). Цепочка C5R6 гасит нежелательные скачки напряжения сток-исток на транзисторе VT2. Конденсатор С1 обеспечивает снижение помех, проникающих в сеть в процессе работы стабилизатора. Номиналы резисторов R3 и R5 подбирают, получая наилучшую и устойчивую стабилизацию напряжения. Выключатель SA1 обеспечивает включение и выключение стабилизатора и нагрузки. Замыкание выключателя SA2 отключает автоматику, стабилизирующую напряжение на нагрузке. Оно в таком варианте оказывается максимально возможным при текущем напряжении в сети.

После включения собранного стабилизатора в сеть, подстроечным резистором R1 устанавливают на нагрузке напряжение, равное 220 В. Нужно учесть, что вышеописанный стабилизатор не может устранить изменения сетевого напряжения, превышающие 220 В, или оказавшиеся ниже минимального, использованного при расчете обмоток трансформатора.

Замечание: В некоторых режимах работы стабилизатора мощность, рассеиваемая транзистором VT2, оказывается весьма значительной. Именно она, а не мощность трансформатора, может ограничить допустимую мощность нагрузки. Поэтому следует позаботиться о хорошем отводе тепла от этого транзистора.

Стабилизатор, устанавливаемый в сыром помещении, нужно обязательно поместить в заземленный металлический корпус.

принцип работы, схемы и т.д.

Стабилизатор напряжения — прибор, который обеспечивает стабильный уровень напряжения, автоматически компенсируя изменения напряжения источника и сопротивления нагрузки. Существует два основных типа стабилизаторов напряжения: параллельные стабилизаторы и последовательные стабилизаторы.

Стабилизация — термин, применяемый для выражения того, насколько хорошо источник электропитания поддерживает постоянное напряжение, подаваемое к нагрузке, независимо от изменений напряжения на входе источника и сопротивления нагрузки. Многие типы электронного оборудования для нормальной работы требуют стабильного уровня напряжения.

Стабилизатор напряжения
Обратите внимание на основы электричества и на приборы электроники.

Параллельный стабилизатор напряжения

Стабилизатор, установленный параллельно нагрузке. Параллельный стабилизатор состоит из стабилитрона (VR1), ограничивающего ток сопротивления (R1) и сопротивления нагрузки (RL). Сопротивление нагрузки установлено параллельно стабилитрону.

Схема параллельного стабилизатора, соединённого с мостовым выпрямителем

Стабилитрон предназначен для работы с конкретным напряжением, известным как напряжение туннельного пробоя p-n-перехода. Поскольку стабилитрон — активный элемент, он может менять своё внутреннее сопротивление. Изменения в прохождении тока через стабилитрон не изменяют падение напряжения в нём. Ограничивающее ток сопротивление, установленное в последовательности со стабилитроном, ограничивает величину тока, которое протекает через стабилитрон, и предохраняет его от повреждений. Падение напряжения в стабилитроне фиксируется посредством самой конструкции стабилитрона и остаётся относительно постоянным. Часть напряжения от источника, которая не снижается стабилитроном, снижается ограничивающим сопротивлением. Поскольку стабилитрон установлен параллельно сопротивлению нагрузки, напряжение через RL будет равно падению напряжения на стабилитроне.

Последовательный стабилизатор

Это стабилизатор, установленный последовательно по отношению к нагрузке. Последовательный стабилизатор состоит из стабилитрона (VR1), ограничивающего ток сопротивления (R1), и сопротивления нагрузки (RL).

Стабилитрон и ограничивающее ток сопротивление соединены последовательно, чтобы образовался делитель напряжения. База транзистора подсоединена к делителю напряжения. Контур транзистора «эмиттер-коллектор» соединён последовательно с сопротивлением нагрузки.

Схема последовательного стабилизатора, соединённого с мостовым выпрямителем

Поскольку транзистор в последовательном стабилизаторе напряжение, воздействующее на базу транзистора, равно падению напряжения в стабилитроне. Этот потенциал положителен относительно эмиттера транзистора. Так как стабилитрон поддерживает падение напряжения на постоянном уровне, потенциал, воздействующий на базу транзистора, будет оставаться постоянным.

Последовательный стабилизатор поддерживает постоянный уровень напряжения, подаваемого на нагрузку, изменяя величину падения напряжения в транзисторе. Возрастание тока через нагрузку может быть вызвано либо повышением напряжения источника питания, либо снижением сопротивления нагрузки. Когда ток возрастает, возрастает также и падение напряжения на нагрузке. В результате, напряжение, приложенное к эмиттеру транзистора, возрастает, делая его более положительным. Это означает, что разность электрических потенциалов между эмиттером и базой становится меньше, поэтому возрастает внутреннее сопротивление транзистора.

7 схем импульсных стабилизаторов напряжения

Благодаря высокому КПД импульсные стабилизаторы напряжения получают в последнее время все более широкое распространение, хотя они, как правило, сложнее и содержат большее число элементов. Поскольку в тепловую энергию преобразуется лишь малая доля подводимой к импульсному стабилизатору энергии, его выходные транзисторы меньше нагреваются, следовательно, за счет снижения площади теплоотводов снижаются масса и размеры устройства.

Ощутимым недостатком импульсных стабилизаторов является наличие на выходе высокочастотных пульсаций, что заметно сужает область их практического использования — чаще всего импульсные стабилизаторы используют для питания устройств на цифровых микросхемах.

Стабилизатор с выходным напряжением, меньшим входного, можно собрать на трех транзисторах (рис. 6.1), два из которых (VT1, VT2) образуют ключевой регулирующий элемент, а третий (ѴТЗ) является усилителем сигнала рассогласования.

Рис. 6.1. Схема импульсного стабилизатора напряжения с КПД 84%.

Устройство работает в автоколебательном режиме. Напряжение положительной обратной связи с коллектора составного транзистора ѴТ1 через конденсатор С2 поступает в цепь базы транзистора ѴТ2.

Элементом сравнения и усилителем сигнала рассогласования является каскад на транзисторе ѴТЗ. Его эмиттер подключен к источнику опорного напряжения — стабилитрону VD2, а база — к делителю выходного напряжения R5 — R7.

В импульсных стабилизаторах регулирующий элемент работает в ключевом режиме, поэтому выходное напряжение регулируется изменением скважности работы ключа. Включением/выключением транзистора VT1 по сигналу транзистора ѴТЗ управляет транзистор ѴТ2. В моменты, когда транзистор ѴТ1 открыт, в дросселе L1, благодаря протеканию тока нагрузки, запасается электромагнитная энергия. После закрывания транзистора запасенная энергия через диод VD1 отдается в нагрузку. Пульсации выходного напряжения стабилизатора сглаживаются фильтром L1, СЗ.

Характеристики стабилизатора целиком определяются свойствами транзистора ѴТ1 и диода VD1, быстродействие которых должно быть максимальным. При входном напряжении 24 В, выходном — 15 В и токе нагрузки 1 А измеренное значение КПД было равно 84%.

Дроссель L1 имеет 100 витков провода диаметром 0,63 мм на кольце К26х16х12 из феррита с магнитной проницаемостью 100. Его индуктивность при токе подмагничивания 1 А — около 1 мГн.

Схема простого импульсного стабилизатора показана на рис. 6.2. Дроссели L1 и L2 намотаны на пластмассовых каркасах, помещенных в броневые магнитопроводы Б22 из феррита М2000НМ. Дроссель L1 содержит 18 витков жгута из 7 проводов ПЭВ-1 0,35. Между чашками его магнитопровода вложена прокладка толщиной 0,8 мм. Активное сопротивление обмотки дросселя L1 27 мОм. Дроссель L2 имеет 9 витков жгута из 10 проводов ПЭВ-1 0,35. Зазор между его чашками — 0,2 мм, активное сопротивление обмотки — 13 мОм. Прокладки можно изготовить из жесткого теплостойкого материала — текстолита, слюды, электрокартона. Винт, скрепляющий чашки магнитопровода, должен быть из немагнитного материала.

Рис. 6.2. Схема простого ключевого стабилизатора напряжения с КПД 60%.

Для налаживания стабилизатора к его выходу подключают нагрузку сопротивлением 5…7 Ом и мощностью 10 Вт. Подбором резистора R7 устанавливают номинальное выходное напряжение, затем увеличивают ток нагрузки до 3 А и, подбирая величину конденсатора С4, устанавливают такую частоту генерации (примерно 18…20 кГц), при которой высокочастотные выбросы напряжения на конденсаторе СЗ минимальны.

Выходное напряжение стабилизатора можно довести до 8…10В, увеличив величину резистора R7 и установив новое значение рабочей частоты. При этом мощность, рассеиваемая на транзисторе ѴТЗ, также увеличится.

В схемах импульсных стабилизаторов желательно использовать электролитические конденсаторы К52-1. Необходимую величину емкости получают параллельным включением конденсаторов.

Основные технические характеристики:

Входное напряжение, В — 15…25.

Выходное напряжение, В — 5.

Максимальный ток нагрузки, А — 4.

Пульсации выходного напряжения при токе нагрузки 4 А во всем диапазоне входных напряжений, мВ, не более — 50.

КПД, %, не ниже — 60.

Рабочая частота при входном напряжении 20 б и токе нагрузки 3А, кГц—20.

В сравнении с предыдущим вариантом импульсного стабилизатора в новой конструкции А. А. Миронова (рис. 6.3) усовершенствованы и улучшены такие его характеристики, как КПД, стабильность выходного напряжения, длительность и характер переходного процесса при воздействии импульсной нагрузки.

Рис. 6.3. Схема импульсного стабилизатора напряжения.

Оказалось, что при работе прототипа (рис. 6.2) возникает так называемый сквозной ток через составной ключевой транзистор. Этот ток появляется в те моменты, когда по сигналу узла сравнения ключевой транзистор открывается, а коммутирующий диод еще не успел закрыться. Наличие такого тока вызывает дополнительные потери на нагревание транзистора и диода и уменьшает КПД устройства.

Еще один недостаток — значительная пульсация выходного напряжения при токе нагрузки, близком к предельному. Для борьбы с пульсациями в стабилизатор (рис. 6.2) был введен дополнительный выходной LC-фильтр (L2, С5). Уменьшить нестабильность выходного напряжения от изменения тока нагрузки можно только уменьшением активного сопротивления дросселя L2. Улучшение динамики переходного процесса (в частности, уменьшение его длительности) связано с необходимостью уменьшения индуктивности дросселя, но при этом неизбежно увеличится пульсация выходного напряжения.

Поэтому оказалось целесообразным исключить этот выходной фильтр, а емкость конденсатора С2 увеличить в 5… 10 раз (параллельным соединением нескольких конденсаторов в батарею).

Цепь R2, С2 в исходном стабилизаторе (рис. 6.2) практически не изменяет длительности спада выходного тока, поэтому ее можно удалить (замкнуть резистор R2), а сопротивление резистора R3 увеличить до 820 Ом. Но тогда при увеличении входного напряжения с 15 6 до 25 6 ток, протекающий через резистор R3 (в исходном устройстве), будет увеличиваться в 1,7 раза, а мощность рассеивания — в 3 раза (до 0,7 Вт). Подключением нижнего по схеме вывода резистора R3 (на схеме доработанного стабилизатора это резистор R2) к плюсовому выводу конденсатора С2 этот эффект можно ослабить, но при этом сопротивление R2 (рис. 6.3) должно быть уменьшено до 620 Ом.

Один из эффективных путей борьбы со сквозным током — увеличение времени нарастания тока через открывшийся ключевой транзистор. Тогда при полном открывании транзистора ток через диод VD1 уменьшится почти до нуля. Этого можно достигнуть, если форма тока через ключевой транзистор будет близка к треугольной. Как показывает расчет, для получения такой формы тока индуктивность накопительного дросселя L1 не должна превышать 30 мкГч.

Еще один путь — применение более быстродействующего коммутирующего диода VD1, например, КД219Б (с барьером Шотки). У таких диодов выше быстродействие и меньше падение напряжения при одном и том же значении прямого тока по сравнению с обычными кремниевыми высокочастотными диодами. Конденсатор С2 типа К52-1.

Улучшение параметров устройства может быть получено и при изменении режима работы ключевого транзистора. Особенность работы мощного транзистора ѴТЗ в исходном и улучшенном стабилизаторах состоит в том, что он работает в активном режиме, а не в насыщенном, и поэтому имеет высокое значение коэффициента передачи тока и быстро закрывается. Однако из-за повышенного напряжения на нем в открытом состоянии рассеиваемая мощность в 1,5…2 раза превышает минимально достижимое значение.

Уменьшить напряжение на ключевом транзисторе можно подачей положительного (относительно плюсового провода питания) напряжения смещения на эмиттер транзистора ѴТ2 (см. рис. 6.3). Необходимую величину напряжения смещения подбирают при налаживании стабилизатора. Если он питается от выпрямителя, подключенного к сетевому трансформатору, то для получения напряжения смещения можно предусмотреть отдельную обмотку на трансформаторе. Однако при этом напряжение смещения будет изменяться вместе с сетевым.

Для получения стабильного напряжения смещения стабилизатор надо доработать (рис. 6.4), а дроссель превратить в трансформатор Т1, намотав дополнительную обмотку II. Когда ключевой транзистор закрыт, а диод VD1 открыт, напряжение на обмотке I определяется из выражения: U1=UBыx + U VD1. Поскольку напряжение на выходе и на диоде в это время меняется незначительно, то независимо от значения входного напряжения на обмотке II напряжение практически стабильно. После выпрямления его подают на эмиттер транзистора VT2 (и VT1).

Рис. 6.4. Схема модифицированного импульсного стабилизатора напряжения.

Потери на нагрев снизились в первом варианте доработанного стабилизатора на 14,7%, а во втором — на 24,2%, что позволяет им работать при токе нагрузки до 4 А без установки ключевого транзистора на теплоотвод.

В стабилизаторе варианта 1 (рис. 6.3) дроссель L1 содержит 11 витков, намотанных жгутом из восьми проводов ПЭВ-1 0,35. Обмотку помещают в броневой магнитопровод Б22 из феррита 2000НМ. Между чашками нужно заложить прокладку из текстолита толщиной 0,25 мм. В стабилизаторе варианта 2 (рис. 6.4) трансформатор Т1 образован намоткой поверх катушки дросселя L1 двух витков провода ПЭВ-1 0,35. Вместо германиевого диода Д310 можно использовать кремниевый, например, КД212А или КД212Б, при этом число витков обмотки II нужно увеличить до трех.

Стабилизатор с широтно-импульсным управлением (рис. 6.5) по принципу действия близок к стабилизатору, описанному в, но, в отличие от него, имеет две цепи обратной связи, соединенные таким образом, что ключевой элемент закрывается при превышении напряжения на нагрузке или увеличении тока, потребляемого нагрузкой.

При подаче питания на вход устройства ток, текущий через резистор R3, открывает ключевой элемент, образованный транзисторами VT.1, VT2, в результате чего в цепи транзистор VT1 — дроссель L1 — нагрузка — резистор R9 возникает ток. Происходит заряд конденсатора С4 и накопление энергии дросселем L1. Если сопротивление нагрузки достаточно большое, то напряжение на ней достигает 12 Б, и стабилитрон VD4 открывается. Это приводит к открыванию транзисторов VT5, ѴТЗ и закрыванию ключевого элемента, а благодаря наличию диода VD3 дроссель L1 отдает накопленную энергию нагрузке.

Рис. 6.5. Схема стабилизатора с широтно-импульсным управлением с КПД до 89%.

Технические характеристики стабилизатора:

Входное напряжение — 15…25 В.

Выходное напряжение — 12 6.

Номинальный ток загрузки — 1 А.

Пульсации выходного напряжения при токе нагрузки 1 А — 0,2 В. КПД (при UBX =18 6, Ін=1 А) — 89%.

Потребляемый ток при UBX=18 В в режиме замыкания цепи нагрузки — 0,4 А.

Выходной ток короткого замыкания (при UBX =18 6) — 2,5 А.

По мере уменьшения тока через дроссель и разряда конденсатора С4 напряжение на нагрузке также уменьшится, что приведет к закрыванию транзисторов VT5, ѴТЗ и открыванию ключевого элемента. Далее процесс работы стабилизатора повторяется.

Конденсатор С3, снижающий частоту колебательного процесса, повышает эффективность стабилизатора.

При малом сопротивлении нагрузки колебательный процесс в стабилизаторе происходит иначе. Нарастание тока нагрузки приводит к увеличению падения напряжения на резисторе R9, открыванию транзистора ѴТ4 и закрыванию ключевого элемента. Далее процесс протекает аналогично описанному выше. Диоды VD1 и VD2 способствуют более резкому переходу устройства из режима стабилизации напряжения в режим ограничения тока.

Во всех режимах работы стабилизатора потребляемый им ток меньше тока нагрузки. Транзистор ѴТ1 следует установить на теплоотводе размерами 40×25 мм.

Дроссель L1 представляет собой 20 витков жгута из трех проводов ПЭВ-2 0,47, помещенных в чашечный магнитопровод Б22 из феррита 1500НМЗ. Магнитопровод имеет зазор толщиной 0,5 мм из немагнитного материала.

Стабилизатор несложно перестроить на другое выходное напряжение и ток нагрузки. Выходное напряжение устанавливают выбором типа стабилитрона VD4, а максимальный ток нагрузки — пропорциональным изменением сопротивления резистора R9 или подачей на базу транзистора ѴТ4 небольшого тока от отдельного параметрического стабилизатора через переменный резистор.

Для снижения уровня пульсаций выходного напряжения целесообразно применить LC-фильтр, аналогичный используемому в схеме на рис. 6.2.

Рис. 6.6. Схема импульсного стабилизатора напряжения с КПД преобразования 69…72%.

Рис. 6.7. Схема импульсного стабилизатора напряжения с малыми пульсациями.

Импульсный стабилизатор напряжения (рис. 6.6) состоит из узла запуска (R3, VD1, ѴТ1, VD2), источника опорного напряжения и устройства сравнения (DD1.1, R1), усилителя постоянного тока (ѴТ2, DD1.2, ѴТ5), транзисторного ключа (ѴТЗ, ѴТ4), индуктивного накопителя энергии с коммутирующим диодом (VD3, L2) и фильтров — входного (L1, С1, С2) и выходного (С4, С5, L3, С6). Частота переключения индуктивного накопителя энергии в зависимости от тока нагрузки находится в пределах 1,3…48 кГц.

Все катушки индуктивности L1 — L3 одинаковы и намотаны в броневых магнитопроводах Б20 из феррита 2000НМ с зазором между чашками около 0,2 мм. Обмотки содержат по 20 витков жгута из четырех проводов ПЭВ-2 0,41. Можно применить также кольцевые ферритовые магнитопроводы с зазором.

Номинальное выходное напряжение 5 В при изменении входного от 8 до 60 б и КПД преобразования 69…72%. Коэффициент стабилизации — 500. Амплитуда пульсаций выходного напряжения при токе нагрузки 0,7 А — не более 5 мВ. Выходное сопротивление — 20 мОм. Максимальный ток нагрузки (без теплоотводов для транзистора VT4 и диода VD3) — 2 А.

Импульсный стабилизатор напряжения (рис. 6.7) при входном напряжении 20…25 В обеспечивает на выходе стабильное напряжение 12 В при токе нагрузки 1,2 А. Пульсации на выходе до 2 мВ. Благодаря высокому КПД в устройстве не используются теплоотводы. Индуктивность дросселя L1 — 470 мкГч.

Аналоги транзисторов: ВС547 — КТ3102А] ВС548В — КТ3102В. Приблизительные аналоги транзисторов ВС807 — КТ3107; BD244 — КТ816.

Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.

Цепи регулятора напряжения

— линейный регулятор напряжения, стабилитрон и импульсный регулятор напряжения

Регулятор напряжения

, как следует из названия, представляет собой схему, которая используется для регулирования напряжения. Регулируемое напряжение — это плавная подача напряжения без каких-либо шумов или помех. Выход регулятора напряжения не зависит от тока нагрузки, температуры и изменения линии переменного тока. Стабилизаторы напряжения присутствуют почти в каждой электронике или бытовой технике, такой как телевизор, холодильник, компьютер и т. Д., Для стабилизации напряжения питания.

В основном, регулятор напряжения минимизирует колебания напряжения для защиты устройства. В системе распределения электроэнергии регуляторы напряжения находятся либо в фидерных линиях, либо на подстанции. В этой линейке используются два типа регуляторов, один — ступенчатый, в котором переключатели регулируют подачу тока. Другой — индукционный регулятор, представляющий собой переменную электрическую машину, подобную асинхронному двигателю, которая подает энергию в качестве вторичного источника. Он сводит к минимуму колебания напряжения и обеспечивает стабильный выход.

Существуют различные типы регуляторов напряжения, которые описаны ниже.

Типы схем регулятора напряжения

Цепь линейного регулятора напряжения

    Регулятор напряжения серии
  • Шунтирующий регулятор напряжения

Цепь стабилизатора напряжения Зенера

Цепь импульсного регулятора напряжения

  • Бак типа
  • Тип наддува
  • Buck / Boost тип

Цепь линейного регулятора напряжения

Это наиболее распространенные регуляторы, используемые в электронике для поддержания постоянного выходного напряжения.Линейные регуляторы напряжения действуют как цепь делителя напряжения, в этом регуляторе сопротивление изменяется в зависимости от изменения нагрузки и дает постоянное выходное напряжение. Некоторые преимущества и недостатки линейного регулятора напряжения приведены ниже:

Преимущества

  • Низкое напряжение пульсации на выходе
  • Ответ быстрый
  • Меньше шума

Недостатки

  • Низкий КПД
  • Требуется большое пространство
  • Выходное напряжение всегда будет меньше входного напряжения

1.Регулятор напряжения серии Регулятор напряжения серии

является частью линейного регулятора напряжения и также называется последовательным регулятором напряжения. Последовательно включенный регулируемый элемент, используемый для поддержания постоянного выходного напряжения. При изменении сопротивления падения напряжения на последовательном элементе его можно изменять, чтобы напряжение на выходе оставалось постоянным.

Как вы можете видеть на принципиальной схеме последовательного регулятора напряжения, NPN-транзистор T1 является последовательным элементом, а стабилитрон используется для обеспечения опорного напряжения.

Когда выходное напряжение увеличивается, напряжение база-эмиттер уменьшается, из-за этого транзистор T1 проводит меньше. Поскольку T1 проводит меньше, он снижает выходное напряжение, следовательно, поддерживает постоянное выходное напряжение.

Когда выходное напряжение уменьшается, напряжение база-эмиттер увеличивается, благодаря чему транзистор T1 проводит больше. По мере того, как T1 проводит больше, выходное напряжение увеличивается, следовательно, выходное напряжение остается постоянным.

Выходное напряжение определяется как:

  V  O  = V  Z  - V  BE  
Где,
V  O  - выходное напряжение
V  Z  - напряжение пробоя стабилитрона
В  BE  напряжение база-эмиттер 

2.Шунтирующий регулятор напряжения

Нерегулируемое напряжение прямо пропорционально падению напряжения на последовательно соединенных сопротивлениях, и это падение напряжения зависит от тока, потребляемого нагрузкой. Если ток, потребляемый нагрузкой, увеличивается, базовый ток также будет уменьшаться, и из-за этого меньший ток коллектора будет течь через вывод коллектора-эмиттера, и, следовательно, ток через нагрузку будет увеличиваться, и наоборот.

Регулируемое выходное напряжение шунтирующего регулятора напряжения определяется как:

  В  ВЫХ  = V  Z  + V  BE   

Стабилитрон

Стабилитроны

дешевле и подходят только для цепей малой мощности.Его можно использовать в приложениях, где количество энергии, потраченное впустую во время регулирования, не имеет большого значения.

Сопротивление

А, последовательно подключено к стабилитрону для ограничения величины тока, протекающего через диод, и входного напряжения Vin (которое должно быть больше, чем напряжение стабилитрона). подключается параллельно, как показано на изображении, и на выходе напряжение Vout снимается на стабилитроне с Vout = Vz (напряжение стабилитрона). Как мы знаем, стабилитрон начинает проводить в обратном направлении, когда приложенное напряжение выше, чем напряжение пробоя стабилитрона.Поэтому, когда он начинает проводить, он поддерживает то же напряжение на нем и возвращает дополнительный ток, таким образом обеспечивая стабильное выходное напряжение.

Узнайте больше о работе стабилитрона здесь.

Импульсный регулятор напряжения

Существует три типа импульсных регуляторов напряжения:

  • Понижающий или понижающий импульсный стабилизатор напряжения
  • Повышающий или повышающий импульсный регулятор напряжения
  • Понижающий / повышающий импульсный стабилизатор напряжения

Понижающий или понижающий импульсный регулятор напряжения

Понижающий регулятор используется для понижения напряжения на выходе, мы даже можем использовать схему делителя напряжения для уменьшения выходного напряжения, но эффективность схемы делителя напряжения низкая, потому что резисторы рассеивают энергию в виде тепла.Мы используем в схеме конденсатор, диод, индуктор и переключатель. Принципиальная схема понижающего импульсного регулятора напряжения приведена ниже:

.

Когда переключатель находится в положении ON, диод остается смещенным в обратном направлении, и к индуктору подключается питание. Когда переключатель разомкнут, полярность катушки индуктивности меняется на обратную, диод становится смещенным вперед и подключает катушку индуктивности к земле. Затем ток через катушку индуктивности уменьшается с крутизной:

  d I  L  / dt = (0-V  OUT ) / L  

Конденсатор используется для предотвращения падения напряжения до нуля на нагрузке.Если мы продолжаем открывать и закрывать переключатель, среднее напряжение на нагрузке будет меньше подаваемого входного напряжения. Вы можете контролировать выходное напряжение, изменяя рабочий цикл переключающего устройства.

  Выходное напряжение = (Входное напряжение) * (процент времени, в течение которого переключатель находится в положении ВКЛ)  

Если вы хотите узнать больше о Buck Converter, перейдите по ссылке.

Повышающий или повышающий импульсный регулятор напряжения

Повышающий регулятор используется для повышения напряжения на нагрузке.Принципиальная схема регулятора наддува приведена ниже:

Когда переключатель замкнут, диод ведет себя как смещенный в обратном направлении, и ток через катушку индуктивности продолжает увеличиваться. Теперь, когда переключатель разомкнут, катушка индуктивности создает силу, заставляющую ток продолжать течь, и конденсатор начинает заряжаться. Постоянно поворачивая переключатель в положение ВКЛ и ВЫКЛ, мы получим напряжение на нагрузке выше, чем входное напряжение. Мы можем контролировать выходное напряжение, контролируя время включения (Ton) переключателя.

  Выходное напряжение = Входное напряжение / процент времени, в течение которого переключатель разомкнут  

Если вы хотите узнать больше о Boost Converter, перейдите по ссылке.

Понижающий импульсный стабилизатор напряжения

Понижающий-повышающий импульсный регулятор представляет собой комбинацию понижающего и повышающего регуляторов, он дает инвертированный выходной сигнал, который может быть больше или меньше подаваемого входного напряжения.

Когда переключатель находится в положении ON, диод ведет себя как смещенный в обратном направлении, и катушка индуктивности накапливает энергию, а когда переключатель находится в положении OFF, индуктор начинает выделять энергию с обратной полярностью, которая заряжает конденсатор.Когда энергия, запасенная в катушке индуктивности, становится равной нулю, конденсатор начинает разряжаться в нагрузку с обратной полярностью. Из-за этого понижающе-повышающий регулятор также называется инвертирующим регулятором .

Выходное напряжение определяется как

  Vout = Vin (D / 1-D) 
  Где, D - рабочий цикл  

Следовательно, если рабочий цикл низкий, регулятор ведет себя как понижающий регулятор, а когда рабочий цикл высокий, регулятор ведет себя как повышающий регулятор.

Практический пример схем регулятора

Цепь регулятора положительного линейного напряжения

Мы разработали схему положительного линейного стабилизатора напряжения с использованием 7805 IC . Эта ИС имеет все схемы для обеспечения 5-вольтного стабилизированного питания. Входное напряжение должно быть как минимум более чем на 2 В от номинального значения, как для LM7805, мы должны обеспечить как минимум 7 В.

На микросхему подается нерегулируемое входное напряжение, и мы получаем стабилизированное напряжение на выходе.Название ИС определяет ее функцию, 78 представляет собой положительный знак, а 05 представляет значение регулируемого выходного напряжения. Как вы видите на принципиальной схеме, мы подаем 9В на 7805IC и получаем стабилизированное + 5В на выходе. Конденсаторы C1 и C2 используются для фильтрации.

Цепь стабилитрона

Здесь мы разработали стабилизатор напряжения на стабилитроне с напряжением 5,1 В. Стабилитрон работает как чувствительный элемент.Когда напряжение питания превышает напряжение пробоя, он начинает проводить в обратном направлении и поддерживает то же напряжение на нем, а дополнительный ток течет обратно, обеспечивая тем самым стабильное выходное напряжение. В этой схеме мы даем 9 В входного напряжения и получаем почти 5,1 напряжения регулируемого выхода.

Общие сведения о том, как работает регулятор напряжения

Регулятор напряжения генерирует фиксированное выходное напряжение заданной величины, которое остается постоянным независимо от изменений его входного напряжения или условий нагрузки.Есть два типа регуляторов напряжения: линейные и импульсные.

В линейном стабилизаторе используется активное (BJT или MOSFET) устройство прохода (последовательное или шунтирующее), управляемое дифференциальным усилителем с высоким коэффициентом усиления. Он сравнивает выходное напряжение с точным опорным напряжением и регулирует проходное устройство для поддержания постоянного выходного напряжения.

Импульсный стабилизатор преобразует входное постоянное напряжение в коммутируемое напряжение, подаваемое на силовой MOSFET или BJT-переключатель. Отфильтрованное выходное напряжение переключателя мощности подается обратно в схему, которая управляет временем включения и выключения переключателя питания, так что выходное напряжение остается постоянным независимо от изменений входного напряжения или тока нагрузки.

Каковы некоторые топологии импульсного регулятора?

Существует три распространенных топологии: понижающая (понижающая), повышающая (повышающая) и понижающая-повышающая (повышающая / понижающая). Другие топологии включают обратноходовые, SEPIC, Cuk, двухтактные, прямые, полномостовые и полумостовые топологии.

Каким образом регулятор частоты коммутации влияет на конструкцию регулятора?

Более высокие частоты переключения означают, что в регуляторе напряжения можно использовать катушки индуктивности и конденсаторы меньшего размера. Это также означает более высокие коммутационные потери и больший шум в цепи.

Какие потери происходят с импульсным регулятором?

Потери возникают из-за мощности, необходимой для включения и выключения полевого МОП-транзистора, которые связаны с драйвером затвора полевого МОП-транзистора. Кроме того, потери мощности полевого МОП-транзистора возникают из-за того, что переключение из состояния проводимости в состояние непроводимости занимает конечное время. Потери также связаны с энергией, необходимой для заряда и разряда емкости затвора MOSFET между пороговым напряжением и напряжением затвора.

Каковы обычные применения линейных и импульсных регуляторов?

Рассеиваемая мощность линейного регулятора прямо пропорциональна его выходному току для данного входного и выходного напряжения, поэтому типичный КПД может быть 50% или даже ниже.Используя оптимальные компоненты, импульсный регулятор может достичь КПД в диапазоне 90%. Однако выходной шум линейного регулятора намного ниже, чем импульсный стабилизатор с такими же требованиями к выходному напряжению и току. Обычно импульсный регулятор может управлять более высокими токовыми нагрузками, чем линейный регулятор.

Как импульсный регулятор управляет своим выходом?
Для импульсных регуляторов

требуются средства для изменения выходного напряжения в ответ на изменения входного и выходного напряжения.Один из подходов — использовать ШИМ, который управляет входом в соответствующий выключатель питания, который контролирует его время включения и выключения (рабочий цикл). Во время работы отфильтрованное выходное напряжение регулятора подается обратно на ШИМ-контроллер для управления рабочим циклом. Если отфильтрованный выходной сигнал имеет тенденцию к изменению, обратная связь, подаваемая на ШИМ-контроллер, изменяет рабочий цикл для поддержания постоянного выходного напряжения.

Какие проектные характеристики важны для ИС регулятора напряжения?

Среди основных параметров — входное напряжение, выходное напряжение и выходной ток.В зависимости от приложения могут быть важны другие параметры, такие как пульсирующее напряжение на выходе, переходная характеристика нагрузки, выходной шум и КПД. Важными параметрами для линейного регулятора являются падение напряжения, PSRR (коэффициент отклонения источника питания) и выходной шум.

использованная литература

Загрузить средства проектирования управления питанием

Линейные и импульсные регуляторы напряжения

Изучите основы как простых линейных регуляторов, так и более сложных импульсных регуляторов.

Опубликовано , Джон Тил

Регуляторы напряжения являются неотъемлемой частью большинства электронных устройств. Функция регулятора напряжения заключается в обеспечении стабильного напряжения на выходе регулятора, в то время как входное напряжение может изменяться.

Регуляторы

(а также зарядные устройства для аккумуляторов) в широком смысле можно разделить на линейные или переключаемые. Поскольку линейные регуляторы намного легче понять, мы начнем с них, а затем перейдем к более сложным импульсным регуляторам.

Линейные регуляторы

Линейные регуляторы можно рассматривать как устройства с переменным сопротивлением, в которых внутреннее сопротивление изменяется для поддержания постоянного выходного напряжения. В действительности переменное сопротивление обеспечивается с помощью транзистора, управляемого контуром обратной связи усилителя.

Линейные регуляторы обычно состоят как минимум из трех контактов — входного входа, выходного контакта и контакта заземления.

Внешние конденсаторы размещаются на входных и выходных клеммах, чтобы обеспечить фильтрацию и улучшить переходную реакцию на внезапные изменения нагрузки.Выходной конденсатор также необходим для стабильности цепи обратной связи регулятора напряжения.

Количество тока, протекающего через регулятор, и количество мощности, рассеиваемой в устройстве, будут влиять на выбор корпуса устройства и требования к теплоотводу.

Линейные регуляторы намного менее эффективны, чем импульсные регуляторы, и поэтому расходуют больше энергии, которая рассеивается в виде тепла.

Если устройство будет рассеивать более 100 мВт, рекомендуется провести более тщательный термический анализ, учитывающий максимальную рабочую температуру и тепловое сопротивление корпуса ИС (известного как Theta-JA).

Если регулятор задает тета-JA 50 ° C / Вт, это означает, что сама температура IC (называемая температурой перехода) повысится на 50 ° C на каждый ватт рассеиваемой мощности.

Большинство микросхем рассчитаны на температуру перехода 125 ° C. Так, например, если регулятор с тета-JA 50 ° C / Вт рассеивает 1 Вт, то максимальная температура окружающей среды, при которой он может использоваться, будет 125 ° C — 50 ° C = 75 ° C.

Линейным регуляторам требуется входное напряжение выше выходного.Минимальная разница уровней напряжения между входом и выходом называется падением напряжения. Для нормального линейного регулятора напряжения падение напряжения составляет около 2 вольт.

Регуляторы с малым падением напряжения (LDO) могут регулировать напряжение до менее 100 мВ. Однако их способность подавлять шум и пульсации на входном источнике питания будет значительно ниже примерно 500 мВ.

Для большинства приложений линейный стабилизатор или, более конкретно, стабилизатор LDO имеет больше смысла, если входное напряжение не более чем на пару вольт превышает выходное напряжение.

В противном случае регулятор будет тратить слишком много энергии, и более эффективный импульсный регулятор будет лучшим вариантом.

Линейные регуляторы имеют три основных преимущества. Они просты, дешевы и обеспечивают исключительно «чистые» выходы напряжения.

Регуляторы переключения

Импульсные регуляторы преобразуют одно напряжение в другое, временно сохраняя энергию, а затем высвобождая эту накопленную энергию на выход с другим напряжением.

Термины «преобразователь постоянного тока в постоянный», импульсный источник питания (SMPS), импульсный стабилизатор и импульсный преобразователь относятся к одному и тому же.Они работают, управляя твердотельным устройством, например транзистором или диодом, которое действует как переключатель.

Переключатель прерывает прохождение тока к компоненту накопителя энергии, например конденсатору или катушке индуктивности, чтобы преобразовать одно напряжение в другое.

Существует множество типов топологий импульсных регуляторов, включая три наиболее распространенных:

Понижающие (понижающие) регуляторы переключения

Понижающий преобразователь может понижать более высокое напряжение на входе до более низкого напряжения на выходе.Это похоже на линейный регулятор, за исключением того, что понижающий регулятор потребляет гораздо меньше энергии.

Если входное напряжение намного выше желаемого выходного напряжения, понижающий стабилизатор обычно предпочтительнее линейного регулятора.

Регуляторы переключения Boost (Step-Up)

Повышающий преобразователь способен создавать более высокое напряжение на выходе, чем на входе. Например, повышающий преобразователь может использоваться для генерации 5 В постоянного тока или 12 В постоянного тока из одного 3.Литий-ионный аккумулятор 7 В постоянного тока.

Понижающие / повышающие (понижающие / повышающие) регуляторы переключения

Понижающий / повышающий преобразователь, как вы могли догадаться, способен выдавать фиксированное выходное напряжение из входного напряжения, которое может изменяться выше и ниже выходного напряжения.

Этот тип регулятора напряжения очень полезен в оборудовании с батарейным питанием, где входное напряжение со временем уменьшается.

Самая простая топология — это просто схема понижающего преобразователя, приведенная выше, за которой следует схема повышающего преобразователя.Два индуктора соединены последовательно, поэтому их можно объединить в один индуктор.

В этом уроке я проектирую печатную плату, используя простой линейный регулятор, а в этом более глубоком курсе я проектирую индивидуальную плату, используя более сложный импульсный стабилизатор.

Сводка общих спецификаций регуляторов напряжения

Независимо от того, является ли регулятор напряжения линейным или импульсным, разработчикам необходимо базовое понимание параметров, характеризующих рабочие характеристики регулятора.

Выходное напряжение: Выходное напряжение может быть фиксированным или регулируемым. Если фиксировано, напряжение устанавливается внутри устройства, и вы приобретаете конкретный номер детали для требуемого выходного напряжения.

Если регулятор регулируемого типа, напряжение обычно устанавливается делителем напряжения, состоящим из двух резисторов. Это дает некоторую гибкость, но за счет дополнительных компонентов.

Входное напряжение: Необходимо строго соблюдать указанные минимальное и максимальное входное напряжение.Они просто не будут работать при напряжении ниже минимального и будут повреждены, если будут работать при напряжении выше максимального.

Токовый выход: Максимальный ток, который может обеспечить регулятор напряжения, ограничен и обычно определяется пропускной способностью внутреннего силового транзистора. Все решения для регуляторов IC включают в себя встроенную схему ограничения тока для предотвращения повреждений.

Выходная пульсация или коэффициент подавления источника питания (PSRR): Выходная пульсация относится к небольшим колебаниям выходного напряжения.Количество пульсаций выходного напряжения очень важно учитывать, поскольку многие типы цепей будут чувствительны к любому шуму на их входном питании.

Линейные регуляторы подавляют входную пульсацию без добавления дополнительной пульсации. Их способность подавлять пульсации определяется коэффициентом отклонения источника питания (PSRR). Чем выше PSRR, тем лучше линейный регулятор подавляет любые пульсации входного напряжения.

С другой стороны, импульсные регуляторы

создают пульсации на выходе по своей природе переключения.Количество пульсаций от переключающего преобразователя можно уменьшить за счет фильтрации и тщательного выбора компонентов.

Обычный метод проектирования заключается в использовании импульсного регулятора для понижения напряжения питания с минимальным рассеянием мощности, за которым следует линейный регулятор для устранения любых пульсаций.

Многие линейные регуляторы с низким уровнем шума и высоким значением PSRR имеют дополнительный вывод, обычно называемый выводом NR или выводом шумоподавления. Размещение конденсатора емкостью около 10 нФ на этом контакте относительно земли помогает отфильтровать шум и пульсации на внутреннем опорном напряжении и, следовательно, на выходном напряжении.

Шум: Многие электронные компоненты, такие как резисторы и транзисторы, также производят фундаментальный физический шум, который обычно путают с пульсацией. Шум будет отображаться как случайные колебания выходного напряжения по сравнению с пульсациями, которые будут отображаться в виде небольшой периодической формы волны.

Хотя это и не связано с пульсацией, те же методы, которые уменьшают пульсации на выходе, обычно также уменьшают шум — в основном, за счет использования шумоподавляющего конденсатора.

Регулировка нагрузки: Регулировка нагрузки относится к способности регулятора поддерживать постоянное выходное напряжение при изменении тока нагрузки.Эта спецификация часто приводится в технических характеристиках устройства в виде графика зависимости выходного напряжения от тока нагрузки.

ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки нового электронного оборудования .

Load Transient: Это мера того, как выходное напряжение реагирует на внезапное скачкообразное изменение тока нагрузки. Обычно имеет место небольшой выброс или недостаточный выброс выходного напряжения, поскольку схема регулятора пытается восстановить и обеспечить стабильное выходное напряжение.

Линейное регулирование: Изменения входного напряжения регулятора могут вызвать изменения выходного напряжения, и линейное регулирование является мерой этого изменения.

Line Transient: Это мера того, как выходное напряжение реагирует на внезапное скачкообразное изменение входного напряжения. Как и в случае переходного процесса нагрузки, будет небольшое превышение или недостижение выходного напряжения, поскольку контур обратной связи регулятора реагирует на внезапное изменение. Регуляторы со спецификацией высокого PSRR (т.е. низкая пульсация на выходе) обычно имеют лучшие переходные характеристики линии.

Падение напряжения: Падение напряжения для классических линейных регуляторов, таких как серии LM317 или LM78xx, составляет около 2 вольт. Это означает, что для работы регулятора входное напряжение должно быть как минимум на 2 вольта выше выходного напряжения.

Регуляторы

с малым падением напряжения (LDO) могут работать с гораздо меньшей разницей входного и выходного напряжения. Например, семейство стабилизаторов с малым падением напряжения TPS732 имеет диапазон входного напряжения 1.От 7 до 5,5 вольт и падение напряжения 40 мВ при 250 мА.

КПД: КПД — это мера того, сколько мощности расходуется регулятором впустую. Как упоминалось ранее, линейный регулятор потребляет намного больше энергии, чем импульсный регулятор. Это означает, что линейный регулятор имеет гораздо более низкий КПД. Эффективность можно рассчитать, разделив выходную мощность на входную.

Таким образом, если выходная мощность такая же, как и входная, тогда КПД равен 100%, и регулятор не тратит впустую энергию.Это идеальный, но недостижимый сценарий. Большинство импульсных регуляторов имеют КПД 80-90%.

КПД линейного регулятора зависит от отношения входного напряжения к выходному. Это связано с тем, что для линейного регулятора входной ток всегда практически идентичен выходному току.

Поскольку мощность равна напряжению, умноженному на ток, токи в уравнении эффективности компенсируются, оставляя только напряжения. Это означает, что чем больше разница между входным напряжением и выходным напряжением, тем хуже эффективность линейного регулятора.

Так, например, для линейного регулятора с входным напряжением 5 В постоянного тока и выходным напряжением 3,3 В постоянного тока эффективность составляет:

КПД = 3,3 В постоянного тока / 5 В постоянного тока = 66%

Но если входное напряжение увеличивается до 12 В постоянного тока, эффективность падает до

.

КПД = 3,3 В постоянного тока / 12 В постоянного тока = 27,5%

, что означает, что 72,5% мощности теряется линейным регулятором!

Основным преимуществом стабилизатора с малым падением напряжения является то, что он обеспечивает выходное напряжение, очень близкое к входному, что означает, что эффективность регулятора намного выше.

Например, при генерации выходного напряжения 3,3 В постоянного тока от литий-ионной батареи 3,7 В постоянного тока требуется LDO с падением напряжения менее 400 мВ. При этих напряжениях КПД составляет 3,3 В постоянного тока / 3,7 В постоянного тока = 89%, что сопоставимо с высокоэффективным понижающим стабилизатором.

В отличие от линейного регулятора, идеальный импульсный регулятор будет иметь КПД 100%, что означает, что входная мощность равна выходной мощности. Это означает, что входной ток никогда не будет таким же, как выходной.

Фактически, входной ток всегда будет меньше, чем выходной ток для понижающего регулятора, и всегда будет выше, чем выходной ток для повышающего регулятора.

Выходной конденсатор: Размер выходного конденсатора имеет решающее значение как для линейных, так и для импульсных регуляторов, поэтому обязательно следуйте рекомендациям в техническом описании. В большинстве случаев керамический конденсатор (с тепловым рейтингом X7R или X5R) является лучшим выбором.

Керамические конденсаторы

имеют очень низкое паразитное сопротивление (называемое эквивалентным последовательным сопротивлением или ESR), которое обычно улучшает переходную характеристику регулятора.Однако будьте осторожны, потому что некоторые регуляторы требуют использования танталовых конденсаторов с более высоким ESR для стабилизации контура управления с обратной связью.

Электромагнитные помехи (EMI)

Одной из проблем при проектировании импульсных источников питания является возможность электромагнитных помех (EMI).

Переключающее действие активного устройства, которое может работать на частотах от 100 килогерц до нескольких мегагерц, может генерировать широкий спектр излучения.Эти излучения могут проводиться и передаваться в близлежащее оборудование, вызывая вредные помехи или даже собственные помехи.

Имейте в виду, что компоновка печатной платы для импульсного стабилизатора очень важна, гораздо в большей степени, чем для линейного регулятора. Поэтому обязательно следуйте рекомендациям по компоновке в таблице данных.

Если в техническом описании выбранного вами импульсного регулятора нет рекомендаций по компоновке, я настоятельно рекомендую выбрать другой регулятор.

Заключение

Когда энергоэффективность не важна или когда входное напряжение лишь немного выше выходного напряжения, лучшим выбором обычно является линейный стабилизатор.Линейные регуляторы обычно дешевле, менее сложны и требуют меньшего количества компонентов.

Если требуется действительно чистое выходное напряжение без пульсаций, то линейный стабилизатор также является лучшим выбором.

С другой стороны, если ключевым моментом является энергоэффективность или входное напряжение намного выше, чем желаемое выходное напряжение, то понижающий импульсный преобразователь является лучшим выбором.

Если требуется выходное напряжение выше входного, выбор прост — только повышающий стабилизатор может выполнить этот трюк.

Как и в случае со всеми аспектами проектирования, между различными решениями всегда приходится идти на компромисс. Во многих случаях лучшим решением является импульсный регулятор, за которым следует линейный регулятор. Таким образом, вы получаете лучшее из обоих миров: эффективность и сверхчистое выходное напряжение.

Наконец, не забудьте загрузить бесплатно PDF : Ultimate Guide to Develop and Sell Your New Electronic Hardware Product . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.

Другой контент, который может вам понравиться:

Как использовать регуляторы напряжения в цепи

Введение

В этом уроке мы рассмотрим, как использовать регулятор напряжения в цепи!

Регуляторы напряжения

предназначены для поддержания и стабилизации уровней напряжения. Регуляторы присутствуют в большинстве электронных устройств и могут использоваться для понижения и управления выходным напряжением от источника высокого напряжения, рассеивая избыточную энергию в виде тепла.Это отлично подходит для приложений, где вам нужно несколько дискретных напряжений для разных устройств в одной цепи, поскольку вы можете использовать регуляторы напряжения для понижения напряжения от одного источника с более высокой выходной мощностью!

Большинство регуляторов напряжения имеют 3 контакта:

Вход — это входное напряжение от исходного источника. Например аккумулятор или блок питания. Вы подаете выход этого устройства на вход регулятора. Вход всегда должен быть как можно более чистым и всегда должен быть больше требуемого выходного напряжения.Большинство регуляторов напряжения имеют минимальное указанное входное напряжение, поэтому убедитесь, что вы его соблюдаете (иначе выходная мощность может быть ниже ожидаемой)

Земля — ​​требуется общая земля между входным и выходным напряжениями. Он должен подключаться к земле в цепи и необходим для работы регулятора.

Выход — выходной контакт выдает регулируемое напряжение.

Как использовать в цепи регуляторы напряжения?

Как работают регуляторы напряжения — это отдельная тема, поэтому здесь мы не будем останавливаться на ней.Достаточно сказать, что регуляторы напряжения — это, по сути, рассеиватели напряжения, которые преобразуют избыточное напряжение в тепло. Более высокое входное напряжение приведет к более горячему регулятору напряжения, так как он будет труднее избавляться от этого избыточного напряжения, поэтому пользователи должны знать об этом!

Ваша настенная розетка выдает переменный ток, в то время как большинство электроприборов питаются постоянным током. Одна из функций источника питания — понижать и преобразовывать этот сигнал переменного тока в постоянный, однако в зависимости от качества используемого источника питания на линии может оставаться «шум», и это может вызвать проблемы для регуляторов напряжения.

Если ваш регулятор расположен на расстоянии более 25 см (10 дюймов) от источника питания, вам необходимо добавить конденсаторы на вход (0,33 мкФ) и выход (0,10 мкФ), чтобы отфильтровать любой остаточный шум переменного тока в линии. Стабилизаторы напряжения работают наиболее эффективно, когда на них подается чистый сигнал постоянного тока, и этот байпасный конденсатор помогает уменьшить любые пульсации переменного тока. По сути, они действуют, чтобы замкнуть шум переменного тока сигнала напряжения на землю и фильтровать только постоянное напряжение в стабилизаторе.

Эти два конденсатора не обязательно требуются, и их можно не устанавливать, если вас не слишком беспокоит уровень шума в линии. E.грамм. если добавляете несколько светодиодов с резисторами. Однако, если вы создаете что-то вроде зарядного устройства для мобильного телефона или используете выход для логической оценки, вам понадобится хорошая чистая линия постоянного тока, поэтому мы рекомендуем включить конденсаторы!

Керамический конденсатор 0,33 мкФ следует подключать после источника напряжения и перед входом регулятора напряжения. Второй конденсатор, керамический конденсатор 0,1 мкФ, должен быть подключен после выхода регулятора напряжения.

В схеме выше у нас есть источник 12 В, который нам нужно стабилизировать до 5 В, чтобы наш светодиод заработал! GND в этой цепи — это просто отрицательная сторона этого источника 12 В.

Первый конденсатор емкостью 0,33 мкФ замыкает любые помехи переменного тока в линии на землю и очищает сигнал для входа нашего регулятора. Регулятор в этой схеме представляет собой регулятор TS7805CZ (5 В 1 А), который затем понижает сигнал напряжения 12 В до 5 В и подает его на выход.

Конденсатор 0,1 мкФ затем очищает сигнал постоянного тока, что оставляет нам хороший чистый источник 5 В. Мы можем использовать для питания любых устройств на 5 В, в данном случае светодиода, но вы можете подключить любое устройство на 5 В на этом этапе!

При использовании регуляторов напряжения в цепи необходимо помнить следующее:

  • Всегда дважды проверяйте выходное напряжение с помощью мультиметра перед подключением вашей цепи.Последнее, что вы хотите сделать, это взорвать свое устройство 5 В, по ошибке пропустив через него большое напряжение
  • Большинство регуляторов имеют только 3 порта (IN / OUT / GND). Если контактов больше, убедитесь, что вы знаете, что они делают и требуются ли какие-либо посторонние компоненты.
  • Избыточное напряжение рассеивается регулятором в виде тепла, поэтому будьте осторожны при проектировании и использовании схем. Если вы понижаете большое напряжение, регулятор будет выделять больше тепла, и вам может потребоваться радиатор, чтобы гарантировать, что ваш регулятор не перегорит.Если он кажется слишком горячим, возможно, он слишком горячий!

Цепи общего пользования с меткой «регулятор напряжения» — CircuitLab

Теперь показаны схемы 1-20 из 21. Сортировать по недавно измененное имя

Стабилизатор переменного напряжения с потенциометром 10К на 10 витков ПУБЛИЧНЫЙ

Базовый источник питания с регулируемым напряжением, настроенный для линейного потенциометра 10K на 10 витков.

по дхаанам | обновлено 17 мая 2020 г.

ноутбук-кирпич регулятор напряжения проволочный

Сигнал управления 0-10 В ПУБЛИЧНЫЙ

Схема для обеспечения регулируемого пользователем управляющего сигнала 0-10 В постоянного тока для светодиодного регулятора освещенности от источника питания 24 В постоянного тока.

от StageTech | обновлено 12 июня 2019 г.

регулятор напряжения

Стабилизатор напряжения с использованием BJT ПУБЛИЧНЫЙ

автор: mk5734 | обновлено 10 апреля 2019 г.

bjt регулятор напряжения стабилитрон

Регулятор напряжения ПУБЛИЧНЫЙ

по mk5734 | обновлено 14 ноября 2018 г.

регулятор напряжения

eScooter — Пользовательский регулятор напряжения 36 В ПУБЛИЧНЫЙ

Базовая схема для настраиваемого регулятора напряжения, понижающего напряжение батареи 36 В постоянного тока до 9 В на выходе.

автор: cxshermansg | обновлено 22 октября 2017 г.

36v аккумулятор Округ Колумбия Шаг вниз tl783 регулятор напряжения

Опорное напряжение на стабилитроне ПУБЛИЧНЫЙ

Стабилитрон обеспечивает управляемый обратный пробой и может действовать как фиксированный источник опорного напряжения.

от CircuitLab | обновлено 8 июня 2017 г.

регулятор напряжения стабилитрон

7805 и бородавка испытывают пропадание напряжения ПУБЛИЧНЫЙ

Линейный стабилизатор напряжения 7805 не может поддерживать выходное напряжение.Ты можешь починить это?

от CircuitLab | обновлено 7 июня 2017 г.

источник питания трансформатор регулятор напряжения

Regulador de tensión ПУБЛИЧНЫЙ

Регулируйте напряжение от 4 до 9 Vcc, через потенциометр R5, с 10 Vcc.1 А.

автор: JCUrchulutegui | обновлено: 6 марта 2016 г.

регулятор напряжения

Регулятор 5 В с низким падением напряжения ПУБЛИЧНЫЙ

привет — Я здесь новенький и нашел схему, которая могла бы работать для меня, но при использовании симулятора, возможно, это не так.входное напряжение постоянно колеблется в пределах от 0 до 10 В постоянного тока, и я хочу получить регулируемое напряжение 5 В постоянного тока. Я…

Ленлен | обновлено 6 июня 2015 г.

источник питания регулятор напряжения

Цепь регулятора напряжения постоянного тока серии LM78XX ПУБЛИЧНЫЙ

по Brodtd | обновлено 25 апреля 2013 г.

lm7812 регулятор напряжения

Регулируемое выпрямленное напряжение постоянного тока с стабилитроном ПУБЛИЧНЫЙ

по Brodtd | обновлено 25 апреля 2013 г.

регулятор напряжения

Caricatore USB Ipod Iphone ПУБЛИЧНЫЙ

пользователя tommaso.Michelutti | обновлено 26 марта 2013 г.

зарядное устройство iphone-ipod USB регулятор напряжения

LM317 тест cct 01 ПУБЛИЧНЫЙ

Регулировка нагрузки стандартных моделей CL LM317 и LM137 оставляет желать лучшего.Simulate> DC Sweep> Запустить DC Sweep Simulate> Time Domain> Run Time-Domain Simulation

по сигналу | обновлено 12 ноября 2012 г.

lm137 lm317 регулятор регулятор напряжения

Регулятор MOSFET ПУБЛИЧНЫЙ

Регулятор на полевых транзисторах с нулевым выпадением и компенсацией сопротивления проводов («отрицательное сопротивление»).Моделирование работы.

автор paulmz | обновлено 17 октября 2012 г.

mosfet симуляция регулятор напряжения

Стабилизирующее питание Variabile с LM317 ПУБЛИЧНЫЙ

пользователя tommaso.Michelutti | обновлено 30 августа 2012 г.

lm317 источник питания стабильность регулятор напряжения

Сильный ток регулятора напряжения ветровой турбины ПУБЛИЧНЫЙ

Стабилизатор напряжения для ветряной турбины с сильноточным выходом.

по rembo_ninja | обновлено 13 июля 2012 г.

регулятор напряжения

поведенческий линейный регулятор 01 ПУБЛИЧНЫЙ

Поведенческий линейный регулятор.Также может быть реализовано с использованием поведенческого источника напряжения.

по сигналу | обновлено 12 июля 2012 г.

поведенческий регулятор линейный регулятор регулятор напряжения

Регулятор напряжения 6В ПУБЛИЧНЫЙ

по loganedwards | обновлено 25 июня 2012 г.

переключение регулятор напряжения

Переключатель с управлением напряжением ПУБЛИЧНЫЙ

Выход 12 В постоянного тока включается только тогда, когда вход 5 В постоянного тока находится в пределах 10% (4.С 5 по 5.5). Диапазон можно изменить, регулируя регуляторы напряжения.

автор: twlbqb | обновлено 30 мая 2012 г.

cmos компаратор контролируемый двойной вход логика mosfet выключатель Напряжение регулятор напряжения

Шунтирующий регулятор напряжения TL431 — простая поведенческая модель ПУБЛИЧНЫЙ

В качестве демонстрации поведенческих источников напряжения и тока в CircuitLab представлена ​​простая модель регулируемого шунтирующего стабилизатора напряжения TL431.

от CircuitLab | обновлено 13 апреля 2012 г.

поведенческий регулятор напряжения

Создание универсального регулятора напряжения с регулируемым напряжением на базе LP2951

Стабилизатор напряжения LP2951 обычно используется в приложениях, требующих заданного выходного напряжения, которое можно легко настроить с помощью двух резисторов.Устройство обеспечивает регулировку с низким падением напряжения в широком диапазоне выходных напряжений от 1,235 В до примерно 30 В. Недорогой и доступный от нескольких производителей (включая MaxLinear, Microchip, ON Semiconductor и Texas Instruments), он является популярным выбором для схем, требующих микромощного регулятора, способного обеспечивать ток нагрузки до 100 мА.

Рисунок 1 Превратите обычную схему в гораздо более универсальный и гибкий регулятор напряжения.

Базовая схема схемы показана на рис. 1 , где резисторы R1 и R2 устанавливают выходное напряжение в соответствии со следующей простой формулой:

V OUT = V REF (1 + R1 / R2) + I FB .R1 (вольт)

Здесь V REF — это внутреннее опорное напряжение (обычно 1,235 В), появляющееся на выводе обратной связи (FB), а I FB — это ток смещения, протекающий на выводе обратной связи. Обычно I FB имеет порядок 20 нА, поэтому, при условии, что R1 не слишком велик, ошибку, вносимую I FB , можно игнорировать, и выражение для выходного напряжения сокращается до:

В ВЫХ = В REF (1 + R1 / R2) (вольт)

Выходное напряжение можно отрегулировать, заменив постоянный резистор R1 переменным сопротивлением, например потенциометром подстроечного резистора.При соответствующем выборе R2 это позволяет изменять напряжение V OUT в широком диапазоне напряжений вплоть до максимум около 30 В. Несмотря на свою гибкость, этот подход имеет ограничения: в частности, его можно использовать только для установки выходного напряжения для одного регулятора, а необходимость ручной регулировки потенциометра не обеспечивает возможности прямого линейного электронного управления. Более того, рассмотрение приведенного выше уравнения показывает, что даже при установке R1 на ноль, V OUT не может быть меньше, чем V REF (1.235В).

Удивите инженерный мир своим уникальным дизайном: Руководство по отправке идей дизайна

Однако добавление всего лишь одного дополнительного резистора R3 позволяет напрямую управлять выходным напряжением с помощью постоянного напряжения V C (рисунок 1). Связь между V OUT и V C является обратной и линейной, то есть увеличение V C приводит к пропорциональному уменьшению V OUT . При соблюдении определенных условий можно установить практически любые отношения.Кроме того, есть дополнительный бонус в том, что V OUT теперь может отклоняться на ниже , чем V REF . Фактически, этот метод позволяет V OUT приближаться к земле (0 В).

Эта простая схема позволяет относительно «слабому» напряжению (например, полученному от ЦАП или операционного усилителя) управлять гораздо более высокими уровнями напряжения и мощности. Это также позволяет одному напряжению управлять несколькими регуляторами, каждый из которых может иметь свою уникальную характеристику управления.

Значения для R1, R2 и R3, необходимые для создания требуемого соотношения V OUT и V C , рассчитываются с использованием уравнений , рис. 2 , где V OUT (мин.) — наименьшее требуемое значение выходное напряжение, возникающее, когда V C является максимальным, (V C (max) ) и V OUT (max) является самым высоким требуемым значением выходного напряжения, возникающим, когда V C равно нулю.При вычислении k , V REF можно принять как его типичное значение (1,235 В).

Рис. 2 Используйте эти расчетные уравнения для расчета значений R1, R2 и R3, которые требуются для создания требуемого соотношения V OUT и V C .

Определив k с помощью уравнения 1, выберите предпочтительное значение для R3, затем используйте уравнения 2 и 3 для вычисления значений для R1 и R2 соответственно. Может потребоваться попробовать несколько различных значений R3, чтобы получить подходящие предпочтительные значения для R1 и R2.Когда вы выбрали значения для R1, R2 и R3, значение V OUT при любом значении V C можно рассчитать с помощью уравнения 4.

Важно выполнить условия, показанные на рис. 2. Первое условие требует, чтобы максимальное значение V OUT было больше, чем V REF . Это необходимо для того, чтобы числитель уравнения 2 не мог быть отрицательным. Требования условия 2 должны быть выполнены, чтобы знаменатель уравнения 1 не мог быть нулевым или отрицательным.

Несколько примеров помогут проиллюстрировать процесс проектирования.

Пример 1

В этом примере мы хотим сгенерировать выходное напряжение в диапазоне от 1,0 В до 10,0 В, используя управляющее напряжение в диапазоне от нуля до 5,0 В, то есть V OUT (мин.) = 1,0 В, возникающее при V C (макс. ) = 5,0 В и V OUT (макс.) = 10,0 В (происходит, когда V C = ноль).

Условия 1 и 2 выполнены, поэтому мы можем использовать уравнение 1 для вычисления k , которое оказывается равным 0.34. Подставляя это значение в уравнения 2 и 3 и пробуя различные значения R3, мы обнаруживаем, что подходящие предпочтительные значения: R1 = 27 кОм; R2 = 5,1 кОм; R3 = 15 кОм. Результаты для этого примера взяты из испытательной схемы, подключенной к нагрузке 330 Ом с входным напряжением V IN = 12,0 В (, рис. 3, ).

Рисунок 3 На этом графике показаны результаты теста для примера 1, где R1 = 27 кОм; R2 = 5,1 кОм; R3 = 15кОм; и V IN = 12,0 В.

Пример 2

Здесь V OUT (мин) = 0.25 В при V C (макс.) = 2,0 В и V OUT (макс.) = 25,0 В (при V C = ноль). При выполнении условий 1 и 2 уравнение 1 дает значение 1,80 для k . Подставляя это значение в уравнения 2 и 3, получаем подходящие предпочтительные значения: R1 = 240 кОм + 7,5 кОм; R2 = 36кОм; R3 = 20 кОм. Результаты взяты из испытательной схемы с R НАГРУЗКА = 1 кОм и V IN = 26,0 В (, рис. 4, ).

Рисунок 4 На этом графике показаны результаты испытаний для примеров 2 и 3.

Пример 3

Здесь нам требуется V OUT (мин.) = 0,5 В при V C (макс.) = 2,0 В и V OUT (макс.) = 12,0 В (при V C = ноль). Условия 1 и 2 выполнены, и уравнение 1 дает значение 1,94 для k . Подставляя это значение в уравнения 2 и 3, получаем: R1 = 270 кОм и R2 = 91 кОм, когда R3 = 47 кОм. Результаты были измерены на испытательной схеме с R НАГРУЗКА = 1 кОм и V IN = 13.0В (рис. 4).

Все приведенные выше примеры иллюстрируют обратную зависимость между управляющим напряжением и выходным напряжением. Когда V C повышается, стремясь подтянуть напряжение на выводе FB выше, обратная связь с обратной связью вынуждает регулятор уменьшать V OUT , чтобы поддерживать потенциал на FB, равный внутреннему опорному напряжению, V REF . Кроме того, в каждом примере V OUT (мин) меньше, чем V REF (значительно меньше в примере 2).Выход может опускаться ниже, чем V REF , потому что регулятор должен подтянуть свой выход к нулю, чтобы удерживать напряжение на выводе FB равным V REF , когда V C возрастает до максимального значения.

Имейте в виду, что если регулятор очень слабо нагружен и / или если R1 и R2 имеют относительно большие значения, измеренное выходное напряжение может отличаться от ожидаемого значения, особенно при низких уровнях V OUT . По всей видимости, это связано с минимальными требованиями к нагрузке LP2951.Эту проблему можно устранить, увеличив нагрузку и / или уменьшив значения R1 и R2.

Примеры 2 и 3 показывают, как одно управляющее напряжение может использоваться для управления двумя (или более) регуляторами, имеющими очень разные выходные характеристики. С добавлением всего одного компонента схема превращает обычную схему в гораздо более универсальный и гибкий регулятор напряжения, который сохраняет все преимущества LP2951 (низкое падение напряжения, ограничение тока и температуры и т. Д.).

Статьи по теме :

Стабилизатор напряжения

: принцип работы и принципиальная схема | Регулятор напряжения в источнике питания

Выходное напряжение источника питания обычно уменьшается при приложении нагрузки. Это снижение нехорошо, и его необходимо свести к минимуму. Величина этого уменьшения измеряется по сравнению с напряжением холостого хода.

Снижение напряжения под нагрузкой по сравнению с напряжением источника питания без нагрузки называется процентным соотношением регулирования напряжения .

Это один из факторов, используемых для определения качества источника питания. Выражается математически:

\ [Percentage \ text {} Voltage \ text {} Regulation = \ frac {{{E} _ {nl}} — {{E} _ {fl}}} {{{E} _ {fl }}} \ times 100 \]

Где E nl равно напряжению без нагрузки, а E fl равно напряжению при полной нагрузке.

Пример регулирования напряжения 1

Источник питания имеет напряжение холостого хода 30 вольт. Это напряжение падает до 25 вольт при приложении нагрузки.Каков его процент регулирования?

\ [Процент \ text {} Напряжение \ text {} Регулировка = \ frac {{{E} _ {nl}} — {{E} _ {fl}}} {{{E} _ {fl}}} \ times 100 \]

\ [Процент \ text {} Напряжение \ text {} Регулировка = \ frac {30V-25V} {25V} \ times 100 = 20% \]

Нагрузочный резистор

Для завершения базовая схема источника питания, резистор нагрузки подключен к источнику питания, Рисунок 1 . Этот резистор служит трем важным целям .

Рисунок 1. Полная цепь питания с нагрузочным резистором.

Первый , нагрузочный резистор выполняет функцию отвода воздуха . Выпускной клапан позволяет заряженным конденсаторам стекать. Во время работы источника питания пиковые напряжения сохраняются в конденсаторах секций фильтра. Эти конденсаторы остаются заряженными после выключения оборудования. Эти конденсаторы могут быть опасными при случайном прикосновении техника.

Нагрузочный резистор позволяет этим конденсаторам разряжаться, когда они не используются.Мудрый техник всегда принимает дополнительные меры предосторожности и замыкает конденсаторы на землю с помощью изолированной отвертки.

Во-вторых, нагрузочный резистор улучшает регулирование. Нагрузочный резистор действует как предварительная нагрузка на источник питания. Это вызывает падение напряжения. Когда оборудование подключено к источнику питания, добавляемое падение довольно мало, и регулирование улучшается.

Пример регулирования напряжения 2

Предположим, что напряжение на клеммах источника питания составляет 30 вольт без нагрузочного резистора.К нему не подключено никакое оборудование. При подключении и включении оборудования напряжение падает до 25 вольт. Регулирование составляет 20 процентов. (См. Предыдущий пример в разделе «Регулировка напряжения».)

Если резистор, подключенный к источнику питания, дает начальное падение до 26 вольт, то выходное напряжение считается 26 вольт. Если оборудование, которое теперь подключено к источнику питания, вызывает падение напряжения до 25 вольт, то регулирование источника питания будет следующим:

\ [Percentage \ text {} Voltage \ text {} Regulation = \ frac {{{E} _ {nl }} — {{E} _ {fl}}} {{{E} _ {fl}}} \ times 100 \]

\ [Percentage \ text {} Voltage \ text {} Regulation = \ frac {26V- 25V} {25V} \ times 100 = 4% \]

Полезное напряжение источника изменилось всего на четыре процента.

Еще одним преимуществом предварительной нагрузки питания является усиление фильтрующего действия дросселя. Резистор позволяет току постоянно течь в источнике питания. Дроссель имеет лучшее фильтрующее действие в этом текущем состоянии, чем когда ток изменяется от низкого значения до нуля.

В-третьих, нагрузочный резистор действует как делитель напряжения. Нагрузочный резистор позволяет получить несколько напряжений от источника питания.

Замена резистора с одной нагрузкой на отдельные последовательно включенные резисторы дает несколько фиксированных напряжений постоянного тока, Рисунок 2 .Резистор скользящего ответвления также можно использовать для регулировки напряжения.

Рисунок 2. Делитель напряжения на выходе источника питания.

Эта схема называется делителем напряжения. Он использует закон Ома (падение напряжения на резисторе равно току, умноженному на сопротивление, или E = I × R). На рисунке 2, и, следовательно, изменяют напряжение на этом отводе.

Пример делителя напряжения

В части A рисунка 3 делитель напряжения состоит из трех резисторов сопротивлением 5 кОм.Подача 30 вольт делится на 10, 20 и 30 вольт на клеммах C, B и A соответственно. В части B к клемме C подключена нагрузка в пять кОм, как показано. Параллельно с R 3 , сопротивление становится:

\ [{{R} _ {T}} = \ frac {{{R} _ {3}} \ times {{R} _ {L}}} {{{R} _ {3}} + {{R} _ {L}}} = \ frac {5000 \ Omega \ times 5000 \ Omega} {5000 \ Omega +5000 \ Omega} = 2500 \]

Рисунок 3. На диаграммах показано изменение сопротивления в делителе напряжения при подключении нагрузки.

Общее сопротивление источника питания с подключенным RL составляет 5000 Ом + 5000 Ом + 2500 Ом = 12 500 Ом. Теперь можно рассчитать ток через делитель.

\ [I = \ frac {{{E} _ {source}}} {R} = \ frac {30V} {12,500 \ Omega} = 0.0024A = 2.4mA \]

Используя общий ток, мы можем рассчитать отдельные падения напряжения. Напряжение в точке C:

$ {{E} _ {C}} = I \ times R = 0,0024A \ times 2500 \ Omega = 6V $

Напряжение в точке B составляет 18 вольт. Если бы к точке B была подключена другая нагрузка, это привело бы к дальнейшему изменению деления напряжения.

Схема цепи регулятора напряжения

Необходим некоторый метод для обеспечения постоянного выходного напряжения на источнике питания при переменных условиях нагрузки. Этот метод учитывает тот факт, что падение напряжения на резисторе равно произведению тока на сопротивление. Этот метод представляет собой схему, называемую регулятором напряжения . Это показано на рисунках 4 и 5. Полный вход фильтра источника питания подается на клеммы A и B.Регулируемый выход проходит через точки C и B.

Регулятор напряжения, используемый на рисунке 4, часто называют трехконтактным стабилизатором напряжения . Обычные выходные регулируемые напряжения могут составлять 5, 6, 8, 12, 15, 18, 24 В и т. Д. (Производители также могут иметь различные номинальные значения тока).

Рис.

Рисунок 5. Схема и схемы подключения регуляторов напряжения.(National Semiconductor Corp.)

Регуляторы напряжения

выпускаются в различных типах корпусов транзисторов (TO-3, TO-39, TO-202, TO-220 и т. Д.). Эти твердотельные регуляторы в основном защищены от взрыва. Они требуют использования радиатора для отвода избыточного тепла от устройства.

Внутренние схемы, используемые в этих регуляторах напряжения, довольно сложны. Они имеют ряд транзисторов, диодов , стабилитронов и резисторов, встроенных в один небольшой корпус. На рис. 5 показаны схемы двух регуляторов напряжения и конструкции их корпусов.

Пример использования регулятора напряжения можно увидеть в автомобиле. Регулятор напряжения автомобиля контролирует уровень напряжения от генератора.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *