Двух-полярный лабораторный блок питания своими руками — Блоки питания — Источники питания
автор DDREDD.
Решил пополнить свою лабораторию двух-полярным блоком питания. Промышленные блоки питания с необходимыми мне характеристиками довольно дороги и доступны далеко не каждому радиолюбителю, поэтому решил собрать такой блок питания сам.
За основу своей конструкции, я взял распространенную в интернете схему блока питания. Она обеспечивает регулировку по напряжению 0-30В, ограничение по току в диапазоне 0,002-3А.
Для меня это пока более чем достаточно, поэтому я решил приступить к сборке. Да, кстати схема этого блока питания одно-полярная, так что для обеспечения двух-полярности — придётся собирать две одинаковые.
Сразу скажу, что силовой транзистор Q4 = 2N3055 в данном блоке питания ( в этой схеме) не подходит. Он очень часто выходит из строя при коротком замыкании и ток в 3 ампера практически не тянет! Лучше всего и гораздо надёжнее, поменять его на наш родной совковый КТ819 в металле.
Блок питания;
R1 = 2,2 кОм 2W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R20, R21 = 10 кОм 1/4W
R13 = 10 кОм (если используете транзистор BD139 то номинал 33кОм) R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K триммер
P1, P2 = 10KOhm линейный потенциометр (группы А)
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ полиэстр
C5 = 200нФ полиэстр
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5402,3,4 диод 2A — RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6V зенеревский
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548, NPN транзистор или BC547
Q2 = 2N2219 NPN транзистор (можно заменить на BD139)
Q3 = BC557, PNP транзистор или BC327
Q4 = 2N3055 NPN силовой транзистор (заменить на КТ819 или КТ 827А и не ставить Q2, R16)
U1, U2, U3 = TL081, опер.

Индикатор;
Резистор = 10K триммер — 2 шт.
Резистор = 3K3 триммер — 3 шт.
Резистор = 100кОм 1/4W
Резистор = 51кОм 1/4W — 3 шт.
Резистор = 6,8кОм 1/4W
Резистор = 5,1кОм 1/4W — 2 шт.
Резистор = 1,5кОм 1/4W
Резистор = 200 Ом 1/4W — 2 шт.
Резистор = 100 Ом 1/4W
Резистор = 56 Ом 1/4W
Диод = 1N4148 — 3 шт.
Диод = 1N4001 — 4 шт. (мост) или любые другие на ток не менее 1 А. (лучше 3 А)
Стабилизатор = 7805 — 2 шт.
Конденсатор = 1000 uF/16V электролитический
Конденсатор = 100нФ полиэстр — 5 шт.
Операционный усилитель МСР502 — 2 шт.
C4 = 100нФ полиэстр
Микроконтроллер ATMega8
LCD 2/16 (контроллер HD44780)
Печатную плату автора я повторять не стал, а перерисовал её по своему и сделал, как мне кажется, гораздо удобней (не говоря о том что я на треть уменьшил её в размерах).
В качестве измерителя (индикаторов), после поисков в просторах «инета», было принято решение использовать схему на микроконтроллере Atmega8, позволяющую реализовать два вольтметра и два амперметра с использованием одного дисплея.
За основу корпуса блока питания, был взят корпус от нерабочего ИБП, который мне подарили друзья из сервисного центра. Ну а дальше немного терпения, и пилил, точил, кромсал. Процесс сборки блока питания запечатлел, и некоторые подробности предоставляю Вашему вниманию.
Да, кстати печатные платы которые я собрал, немного отличаются от печатки, которую я выложил в архиве. Просто после сборки передвинул детали и «положил» на плату конденсатор, это как оказалось, может быть очень полезно для экономии места в корпусе.
Так как, у меня силовые транзисторы прикреплены к радиатору просто через термо-пасту, то потребовалось изолировать их радиаторы друг от друга и от корпуса. Для этого я в авто-магазине прикупил пластмассок, через которые и прикрепил радиаторы к корпусу БП.
Потом конечно же всё проверил и прозвонил, всё оказалось замечательно, ничего, нигде не касается и не коротит.
Для обеспечения температурного режима элементов блока питания, разметил и высверлил в корпусе вентиляционные отверстия для отвода тепла, потом немного покрыл корпус грунтовкой, чтобы выявить какие остались косячки.
Под чутким руководством Кирилла (Kirmav) прошил микроконтроллер и проверил работу индикатора, пока что без калибровок.
Вольтметры работают нормально, амперметры нагрузить было нечем, но скорее всего тоже работают, так как касаюсь пальцами контактов на плате, значения на индикаторе меняются.
День как говорится, закончился для меня очень удачно.
Потом перемотал (вернее домотал) силовой трансформатор. Раньше на нём была одна силовая обмотка на 24 В переменки, домотал ещё одну для второго канала БП, благо — тор, и разбирать ничего не нужно. Так же добавил ещё одну обмотку на 8,5 вольт переменки (примерно 12В постоянки), проводом 0,5 мм. Запитал от этой обмотки индикатор и куллер с регулятором оборотов, всё вроде нормально работает.
Имейте в виду, что для данного блока питания необходим трансформатор с двумя раздельными вторичными обмотками.
Трансформатор с вторичной обмоткой со средней точкой не подойдёт!
Стабилизатор 7805 греется, но в принципе рука держит, значит температура его около 35-40 С, с заменой радиатора думаю все станет лучше.
Регулировка для куллера была выдрана из комповского БП и в общем то работает нормально.
Немного греются диоды на плате индикатора (диодный мост), но думаю не так страшно.
Начал красить корпус, потом уже после того, как его покрасил, только на фотографии заметил, что не прокрасил заднюю часть лицевой панели, а она выглядывает из за корпуса и вид её не очень, придется заново её перекрасить.
Забыл сказать про индикатор, вольтамперметр. Автор этого вольтамперметра, пользователь
Сначала я собрал эту схему, но в процессе наладки выявилось то, что данная схема хорошо работает там, где два источника с общим минусом, а вот в двух-полярном блоке питания она совершенно не желает отображать отрицательные величины.
Долго мне пришлось повозиться, прежде чем на появились положительные результаты.
И вот наконец, на основе наработанной другим человеком схемы, нескольких дней «плясок с бубном», работой с протеусом, кучей потраченного времени и нервов, я построил свою, которая способна показывать величину отрицательного плеча. Правда она показывает её в положительной полярности, но это не сильно печально, главное, что она уже работает, и я связался с автором прошивки и попросил его немного изменить прошивку так, чтобы ко второму каналу индикатора (U2 и А2), программа просто пририсовывала бы минусы к выводимым показаниям (надеюсь на его помощь). Но это уже так, просто эстетический момент, главное что схема уже работает.
Прошу знатоков посмотреть схему и оценить номиналы (в амперметре подобраны методом тыка, но погрешность очень мала и меня более чем устраивает).
Потом сделал печатку для индикатора, собрал всё в кучу и проверил. Вольтметры заработали оба и амперметр положительного плеча тоже. Плюс ко всему, сегодня твердо уяснил для себя, что все надо проектировать заранее, а потом уже пилить и вытачивать. Ну да ладно это все мелочи. В общем посидел, покипел и кое что дорисовал, потом проверил отрицательный амперметр — все работает. В связи с этим выкладываю свою печатку вольт-амперметра, может кому и сгодится.
Плату собирал из того, что было под руками. Для шунта взял 45 см. медного провода, диаметром 1мм и намотал его спиралью и впаял в плату. Я конечно понимаю, что медь не лучший материал для шунта (конечно же не в коем случае не прошу следовать моему примеру), но меня пока устраивает, а дальше будет видно.
В печатке которую я вытравил себе — немного «накосячил» с диодным мостом (видно на фото платы), но переделывать было уже лень — вышел из положения перекрестив диоды, после этого печатку поправил (в архиве исправленный вариант). Так же на схеме и на печатке есть разъём для подключения куллера.
Хочу сказать, что после того как схема заработал, я прямо таки полюбил протеус, не плохо оказывается работает, и уяснил для себя, что чтобы добиться желаемого результата, надо расширять свои познания в разных областях, и естественно учиться.
Ещё один вечер пришлось посвятить черчению передней панели. Дело это хоть и не сложное, но все же нудное и требует много терпения.
Для черчения, я в основном использую программу «Компас 3D». Не знаю кому как, но мне почему то проще сначала сделать 3D-модель, а уже потом на её основе изготовить чертёж. Мне как то в свое время стало просто интересно что нибудь в «Компасе» начертить, чтобы соблюсти все размеры и прочее, решил попробовать, и как то это всё затянуло. Я конечно не владею Компасом на ура, но на базовом уровне вполне себе ничего. Ну и помимо Компаса — некоторая доработка передней панели в фотошоп.
Я уже говорил, что попросил автора схемы и прошивки — немного переделать саму прошивку, и вот наконец-то при его поддержке (спасибо ему огромное), удалось изменить приветствие при включении блока питания, а так же дорисовать долгожданный минус в отрицательном плече второго канала индикатора (мелочь, а приятно). У меня это теперь выглядит вот так.
Ну, и специально для тех, кто решит повторить данную конструкцию, он сделал общий вариант приветствия при включении блока питания, который выглядит следующим образом (ну и конечно-же минусы в отрицательном плече).
Специально для тех кому интересно, выкладываю так же в прикреплённом архиве печатку платы контроля работы куллера. Я её перерисовал с готовой платы которая была изъята из комповского бп — должна работать.
P.S. Сам ещё её не собирал.
При испытании собранного БП — решил проверить усилочик, отданный мне в дар. Блок питания успешно справился со своей задачей (обеспечил требуемое напряжение и ток для проверки) правда больше полутора ампер усилок не потреблял в момент проверки.
Для тех, кто решит собирать данный блок питания, скажу, что схема проверенная, повторяемость 100%, при правильной сборке из исправных, проверенных деталей, в налаживании практически не нуждается.
Правда регулировка напряжения и тока раздельная для каждого канала, но это может и лучше с одной стороны.
В архиве установка FUSE (фузов), которые соответствуют работе от внутреннего генератора 4MHz, скрин установки для программы PonyProg.
Удачи в сборке!
Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их ЗДЕСЬ на форуме.
Архив для статьи
Двух-полярный лабораторный блок питания своими руками — Блоки питания — Источники питания
автор DDREDD.
Решил пополнить свою лабораторию двух-полярным блоком питания. Промышленные блоки питания с необходимыми мне характеристиками довольно дороги и доступны далеко не каждому радиолюбителю, поэтому решил собрать такой блок питания сам.
За основу своей конструкции, я взял распространенную в интернете схему блока питания. Она обеспечивает регулировку по напряжению 0-30В, ограничение по току в диапазоне 0,002-3А.
Для меня это пока более чем достаточно, поэтому я решил приступить к сборке. Да, кстати схема этого блока питания одно-полярная, так что для обеспечения двух-полярности — придётся собирать две одинаковые.
Сразу скажу, что силовой транзистор Q4 = 2N3055 в данном блоке питания ( в этой схеме) не подходит. Он очень часто выходит из строя при коротком замыкании и ток в 3 ампера практически не тянет! Лучше всего и гораздо надёжнее, поменять его на наш родной совковый КТ819 в металле. Можно поставить и КТ827А, этот транзистор составной и в этом случае надобность в транзисторе Q2 отпадает и его, а так же резистор R16 можно не ставить и базу КТ827А подключить на место базы Q2. В принципе можно транзистор и резистор и не удалять (при замене на КТ827А), всё работает и с ними и не возбуждается. Я сразу поставил наши КТ827А и не удалял транзистор Q2 (схему не менял), а заменил его на BD139 (КТ815), теперь и он не греется, правда вместе с ним надо заменить R13 на 33к. Выпрямительные диоды у меня с запасом по мощности. В исходной схеме стоят диоды на ток 3 А, желательно поставить на 5 А (можно и поболее), запас лишним никогда не будет.
Блок питания;
R1 = 2,2 кОм 2W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R20, R21 = 10 кОм 1/4W
R13 = 10 кОм (если используете транзистор BD139 то номинал 33кОм) R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K триммер
P1, P2 = 10KOhm линейный потенциометр (группы А)
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ полиэстр
C5 = 200нФ полиэстр
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5402,3,4 диод 2A — RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6V зенеревский
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548, NPN транзистор или BC547
Q2 = 2N2219 NPN транзистор (можно заменить на BD139)
Q3 = BC557, PNP транзистор или BC327
Q4 = 2N3055 NPN силовой транзистор (заменить на КТ819 или КТ 827А и не ставить Q2, R16)
U1, U2, U3 = TL081, опер. усилитель
D12 = LED диод.
Индикатор;
Резистор = 10K триммер — 2 шт.
Резистор = 3K3 триммер — 3 шт.
Резистор = 100кОм 1/4W
Резистор = 51кОм 1/4W — 3 шт.
Резистор = 6,8кОм 1/4W
Резистор = 5,1кОм 1/4W — 2 шт.
Резистор = 1,5кОм 1/4W
Резистор = 200 Ом 1/4W — 2 шт.
Резистор = 100 Ом 1/4W
Резистор = 56 Ом 1/4W
Диод = 1N4148 — 3 шт.
Диод = 1N4001 — 4 шт. (мост) или любые другие на ток не менее 1 А. (лучше 3 А)
Стабилизатор = 7805 — 2 шт.
Конденсатор = 1000 uF/16V электролитический
Конденсатор = 100нФ полиэстр — 5 шт.
Операционный усилитель МСР502 — 2 шт.
C4 = 100нФ полиэстр
Микроконтроллер ATMega8
LCD 2/16 (контроллер HD44780)
Печатную плату автора я повторять не стал, а перерисовал её по своему и сделал, как мне кажется, гораздо удобней (не говоря о том что я на треть уменьшил её в размерах).
В качестве измерителя (индикаторов), после поисков в просторах «инета», было принято решение использовать схему на микроконтроллере Atmega8, позволяющую реализовать два вольтметра и два амперметра с использованием одного дисплея.
За основу корпуса блока питания, был взят корпус от нерабочего ИБП, который мне подарили друзья из сервисного центра. Ну а дальше немного терпения, и пилил, точил, кромсал. Процесс сборки блока питания запечатлел, и некоторые подробности предоставляю Вашему вниманию.
Да, кстати печатные платы которые я собрал, немного отличаются от печатки, которую я выложил в архиве. Просто после сборки передвинул детали и «положил» на плату конденсатор, это как оказалось, может быть очень полезно для экономии места в корпусе.
Так как, у меня силовые транзисторы прикреплены к радиатору просто через термо-пасту, то потребовалось изолировать их радиаторы друг от друга и от корпуса. Для этого я в авто-магазине прикупил пластмассок, через которые и прикрепил радиаторы к корпусу БП.
Потом конечно же всё проверил и прозвонил, всё оказалось замечательно, ничего, нигде не касается и не коротит.
Для обеспечения температурного режима элементов блока питания, разметил и высверлил в корпусе вентиляционные отверстия для отвода тепла, потом немного покрыл корпус грунтовкой, чтобы выявить какие остались косячки.
Под чутким руководством Кирилла (Kirmav) прошил микроконтроллер и проверил работу индикатора, пока что без калибровок.
Вольтметры работают нормально, амперметры нагрузить было нечем, но скорее всего тоже работают, так как касаюсь пальцами контактов на плате, значения на индикаторе меняются.
День как говорится, закончился для меня очень удачно.
Потом перемотал (вернее домотал) силовой трансформатор. Раньше на нём была одна силовая обмотка на 24 В переменки, домотал ещё одну для второго канала БП, благо — тор, и разбирать ничего не нужно. Так же добавил ещё одну обмотку на 8,5 вольт переменки (примерно 12В постоянки), проводом 0,5 мм. Запитал от этой обмотки индикатор и куллер с регулятором оборотов, всё вроде нормально работает.
Имейте в виду, что для данного блока питания необходим трансформатор с двумя раздельными вторичными обмотками.
Трансформатор с вторичной обмоткой со средней точкой не подойдёт!
Стабилизатор 7805 греется, но в принципе рука держит, значит температура его около 35-40 С, с заменой радиатора думаю все станет лучше.
Регулировка для куллера была выдрана из комповского БП и в общем то работает нормально.
Немного греются диоды на плате индикатора (диодный мост), но думаю не так страшно.
Начал красить корпус, потом уже после того, как его покрасил, только на фотографии заметил, что не прокрасил заднюю часть лицевой панели, а она выглядывает из за корпуса и вид её не очень, придется заново её перекрасить.
Забыл сказать про индикатор, вольтамперметр. Автор этого вольтамперметра, пользователь [email protected] с сайта c2.at.ua. За основу моего индикатора, была выбрана та схема, где на одном дисплее реализуются два вольтметра и два амперметра.
Сначала я собрал эту схему, но в процессе наладки выявилось то, что данная схема хорошо работает там, где два источника с общим минусом, а вот в двух-полярном блоке питания она совершенно не желает отображать отрицательные величины.
Долго мне пришлось повозиться, прежде чем на появились положительные результаты.
И вот наконец, на основе наработанной другим человеком схемы, нескольких дней «плясок с бубном», работой с протеусом, кучей потраченного времени и нервов, я построил свою, которая способна показывать величину отрицательного плеча. Правда она показывает её в положительной полярности, но это не сильно печально, главное, что она уже работает, и я связался с автором прошивки и попросил его немного изменить прошивку так, чтобы ко второму каналу индикатора (U2 и А2), программа просто пририсовывала бы минусы к выводимым показаниям (надеюсь на его помощь). Но это уже так, просто эстетический момент, главное что схема уже работает.
Прошу знатоков посмотреть схему и оценить номиналы (в амперметре подобраны методом тыка, но погрешность очень мала и меня более чем устраивает).
Потом сделал печатку для индикатора, собрал всё в кучу и проверил. Вольтметры заработали оба и амперметр положительного плеча тоже. Плюс ко всему, сегодня твердо уяснил для себя, что все надо проектировать заранее, а потом уже пилить и вытачивать. Ну да ладно это все мелочи. В общем посидел, покипел и кое что дорисовал, потом проверил отрицательный амперметр — все работает. В связи с этим выкладываю свою печатку вольт-амперметра, может кому и сгодится.
Плату собирал из того, что было под руками. Для шунта взял 45 см. медного провода, диаметром 1мм и намотал его спиралью и впаял в плату. Я конечно понимаю, что медь не лучший материал для шунта (конечно же не в коем случае не прошу следовать моему примеру), но меня пока устраивает, а дальше будет видно.
В печатке которую я вытравил себе — немного «накосячил» с диодным мостом (видно на фото платы), но переделывать было уже лень — вышел из положения перекрестив диоды, после этого печатку поправил (в архиве исправленный вариант). Так же на схеме и на печатке есть разъём для подключения куллера.
Хочу сказать, что после того как схема заработал, я прямо таки полюбил протеус, не плохо оказывается работает, и уяснил для себя, что чтобы добиться желаемого результата, надо расширять свои познания в разных областях, и естественно учиться.
Ещё один вечер пришлось посвятить черчению передней панели. Дело это хоть и не сложное, но все же нудное и требует много терпения.
Для черчения, я в основном использую программу «Компас 3D». Не знаю кому как, но мне почему то проще сначала сделать 3D-модель, а уже потом на её основе изготовить чертёж. Мне как то в свое время стало просто интересно что нибудь в «Компасе» начертить, чтобы соблюсти все размеры и прочее, решил попробовать, и как то это всё затянуло. Я конечно не владею Компасом на ура, но на базовом уровне вполне себе ничего. Ну и помимо Компаса — некоторая доработка передней панели в фотошоп.
Я уже говорил, что попросил автора схемы и прошивки — немного переделать саму прошивку, и вот наконец-то при его поддержке (спасибо ему огромное), удалось изменить приветствие при включении блока питания, а так же дорисовать долгожданный минус в отрицательном плече второго канала индикатора (мелочь, а приятно). У меня это теперь выглядит вот так.
Ну, и специально для тех, кто решит повторить данную конструкцию, он сделал общий вариант приветствия при включении блока питания, который выглядит следующим образом (ну и конечно-же минусы в отрицательном плече).
Специально для тех кому интересно, выкладываю так же в прикреплённом архиве печатку платы контроля работы куллера. Я её перерисовал с готовой платы которая была изъята из комповского бп — должна работать.
P.S. Сам ещё её не собирал.
При испытании собранного БП — решил проверить усилочик, отданный мне в дар. Блок питания успешно справился со своей задачей (обеспечил требуемое напряжение и ток для проверки) правда больше полутора ампер усилок не потреблял в момент проверки.
Для тех, кто решит собирать данный блок питания, скажу, что схема проверенная, повторяемость 100%, при правильной сборке из исправных, проверенных деталей, в налаживании практически не нуждается.
Правда регулировка напряжения и тока раздельная для каждого канала, но это может и лучше с одной стороны.
В архиве установка FUSE (фузов), которые соответствуют работе от внутреннего генератора 4MHz, скрин установки для программы PonyProg.
Удачи в сборке!
Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их ЗДЕСЬ на форуме.
Архив для статьи
Двуполярный регулируемый БП из однополярного
Приветствую, радиолюбители-самоделкины!Немаловажное направление в электронике — построение различных блоков питания, в частности, лабораторных, которые позволяют регулировать выходное напряжение в широких пределах, ограничивать ток при необходимости, защищать от коротких замыканий, а также показывать текущее напряжение на выходе и ток, который потребляет нагрузка. Ни один бывалый радиолюбитель не обходится без собственного лабораторного блока питания, ведь любую схему после сборки нужно протестировать, подав напряжение, контролируя при этом так, а иногда требуется контроль и при разных питающих напряжениях — например, как поведёт себя устройство при снижении напряжения на питающем аккумуляторе. По этой причине в сети представлено довольно большое количество различных схем блоков питания, они могут быть как самыми примитивными, например, на микросхеме LM317, позволяющие регулировать только выходное напряжение, так и более продвинутые, в том числе с применением высокоточных амперметров-вольтметров, различным набором полезных функций. Чаще всего используются обычные однополярные блоки питания — на их выходе имеется два контакта, плюс и минус, ведь большинство электронных схем питаются также от однополярного напряжения. Но есть также схемы, которые требуют двуполярного напряжения — выглядит оно следующим образом: имеется некая средняя точка (земля), относительно неё есть положительный потенциал (напряжение), и отрицательный. Можно представить это как два однополярных источника напряжения, например, батарейки, включенные последовательно — точка их соединения будет землёй, относительно этой точки будет и положительное плечо, и отрицательное, общий размах напряжений будет равен сумме двух источников, на выходе такого блока питания будет уже три контакта — плюс, минус, и земля (средняя точка).
Устройств, которые требуют для питания двуполярного напряжения, не так много, но, тем не менее, они существуют и иногда в них возникает потребность. Например, чаще всего от двуполярного напряжения питаются различные усилители, как мощные, так и слаботочные на операционных усилителях. Поэтому двуполярный блок питания хоть и не так часто используется, но обязательно должен быть столе продвинутого радиолюбителя, чтобы не задумываться, где взять такой источник, когда в этом возникнет потребность. Конечно, можно собрать такой блок питания с нуля и оформить в виде отдельного устройства — но это не всегда имеет смысл, особенно учитывая, что он не так часто используется. Зато всегда можно собрать небольшую приставку для обычного однополярного регулируемого блока питания, которая позволит получать двуполярное напряжение из однополярного с достаточной мощностью — запитать можно будет даже мощный усилитель. Схема такой приставки представлена ниже.
В левой части схемы в виде большого прямоугольного показан исходный обнополярный БП, в который будет добавлена приставка.

Рассмотрим более подробно элементы схемы.


Транзисторы в схеме используются разной структуры — PNP и NPN, лучше всего применить комплиментарные пары, например, подойдут отечественные КТ805/КТ837, КТ819/КТ818, КТ827/КТ825. Важным параметром транзисторов в данном случае будет максимальный ток, который они выдерживают — чем он будет больше, тем надёжнее получится схема. Также нужно смотреть а допустимое рабочее напряжение, оно должно быть как минимум 50В. Диоды на выходе преобразователя нужны для того, чтобы транзисторы не шунтировали подключаемую нагрузку — использовать здесь также стоит мощные диоды, рассчитанные на большой ток, подойдут КД226, КД210, КД237 либо их импортные аналоги. Также важной частью схемы являются конденсаторы С1 и С2 — электролитические большой ёмкости, они служат для фильтрации пульсаций на выходе, экономить в данном случае на их ёмкости не стоит, на схеме указано минимально возможная ёмкость, не лишним будет также зашунтировать их небольшими керамическими/плёночными конденсаторами. Напряжение С1 и С2, в идеальном случае, должно быть не меньше, чем максимальное напряжение исходного однополярного блока питания.

Автор установил такую приставку в уже собранный готовый лабораторные БП, плата не занимает много места, но существенно расширяет функционал. Транзисторы нужно разместить на радиаторах, чем больше будет ток нагрузки — тем больше должны быть радиаторы.
Общий вид получившегося блока питания. На переднюю панель добавлен тумблер, который переключает выход и режим однополярного БП, либо двуполярного. Штатный регулятор по прежнему выполняет свою функцию и позволяет регулировать напряжение на выходе. Не лишним также будет предохранитель, установленный в отдельном отсеке сбоку корпуса. Удачной сборки! Все вопросы и дополнения пишите в комментарии.
Источник (Source)
Двухполярный лабораторный блок питания своими руками
Собираем простой двухполярный лабораторный блок питания для лаборатории начинающего радиолюбителя
Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“
Лаборатория радиолюбителя.
Собираем лабораторный блок питания.
Часть 3.
В третьей части занятия мы с вами проверим работоспособность собранной радиолюбительской схемы – лабораторного блока питания и соберем простой корпус для нашей конструкции.
Проверяем исправность сетевого трансформатора, для чего к сетевой обмотке припаиваем шнур питания (сетевая обмотка обычно намотана самым тонким по диаметру проводом и имеет самое большое сопротивление обмотки – измеряется тестером) и измеряем переменное напряжение на вторичных обмотках трансформатора:
Как видите мой трансформатор исправен и выдает на вторичной обмотке без нагрузки переменное напряжение в 22 вольта.
Теперь проверяем работоспособность нашей схемы – сначала положительный канал, затем – отрицательный. Для этого припаиваем переменные сопротивления и подаем переменное напряжение с трансформатора в соответствии со схемой, замеряем минимальное и максимальное напряжения на выходах схемы и его изменение при повороте ручки сопротивления:
Как видите у меня блок питания выдает максимальное положительное напряжение без нагрузки в 26,8 вольта.
Особо хочется на данном этапе остановиться и поговорить о том, как мы будем контролировать выходные напряжения. Как я уже говорил раннее, для измерения выходного напряжения можно использовать измерительные головки двух типов – аналоговые (со стрелкой) или цифровые (с выводом на дисплей). В магазинах цена этих измерительных головок не сильно отличается у разных типов. Если использовать аналоговые головки с диапазоном измеряемого напряжения хотя бы на 30 вольт и не очень большого размера то возникает трудность в точном определении выходного напряжения. Я рекомендую вам использовать цифровые встраиваемые вольтметры:
Как видите, я использовал цифровые вольтметры постоянного тока с LCD дисплеем. В магазинах такие модули конечно дороговаты, но их цена резко уменьшается если заказать их через интернет на сайте производителя таких модулей. Характеристики этих вольтметров и где их можно приобрести я расскажу на форуме в соответствующей теме.
Приступаем к окончательной сборки устройства и корпуса к блоку питания. Для изготовления корпуса я использовал то, что у меня оказалось под рукой – оргстекло. Определяемся с размерами корпуса. Делать корпус маленьким, впритык, не совсем целесообразно. Корпус блока питания должен быть достаточно просторным и хорошо вентилироваться. Не исключено, что в дальнейшем вы захотите модернизировать эту конструкцию, как-то улучшить, и тогда вам не придется заниматься изготовлением нового корпуса. Ниже на картинках, с краткими комментариями, я покажу как можно быстро собрать корпус для вашей конструкции. А качество его изготовления, внешняя привлекательность целиком зависит от ваших “очумелых ручек”:
После того, как вы определились с размерами корпуса (высота, ширина и глубина) необходимо нарезать из оргстекла заготовки. Я использую для этих целей инструмент называемый в просторечии “бормашиной” с комплектом различных насадок. Надо заметить, что такой инструмент очень облегчает жизнь:
Далее, определяемся как и где у нас будут находится на передней панели приборы управления (переменные резисторы), экраны вольтметров, тумблер включения питания, выходные разъемы, светодиод индикации включения питания, примерно так (все зависит от вашей фантазии и удобством пользования):
Затем, на листе миллиметровой бумаги или обычной в клетку, более точно определяемся с расположением деталей и размерами отверстий под них:
Затем, накладываем этот лист бумаги на заготовку передней панели, и мелким сверлом делаем отверстия в центрах крепления наших деталей, а в прямоугольниках отверстия делаем по всем углам и после этого маркером переносим все размеры отверстий на оргстекло:
Далее, используя весь подручный инструмент, терпение и огромное желание пройти этот самый сложный этап, высверливаем и вырезаем все отверстия на панели. Вначале будет не очень красиво (можно сказать – отвратительно), но все это поправимо:
Но проявляя настойчивость и изобретательство, постепенно доводим панель до ума. И вот уже не так противно смотреть:
Как видите, вид уже более привлекательный, но все равно не совсем еще выравнены края и прямоугольные отверстия, отлично получились только круглые отверстия. Но все это устранится в ходе дальнейшей сборки корпуса. Далее начинаем собирать корпус. Для соединения стенок между собой я использовал маленькие мебельные уголки и подходящие винты с гайками:
Винты я использовал двух типов: те, что справа – для крепления боковых стенок к основанию, а те что сверху (большим диаметром) – для крепления верхней крышки, предварительно нарезав метчиком соответствующую резьбу в уголках для этих болтов:
Да, забыл о главном, прежде чем собирать корпус необходимо прикинуть как вы расположите плату и трансформатор на основании, заранее просверлить отверстия для их крепления (я крепил плату на два болта а трансформатор просто приклел клеем “Момент” к основанию). Также надо не забыть насверлить отверстий в основании платы и верхней крышки для обеспечения циркуляции воздуха внутри корпуса:
Собираем полностью корпус, естественно кроме верхней крышки:
Затем устанавливаем все внутренности, разъемы, переменные резисторы, цифровые вольтметры. Кроме того, к сожалению я сразу упустил этот момент, необходимо поставить (или на задней стенке, или на лицевой панели) держатель сетевого предохранителя с предохранителем. При этом сетевое напряжение мы подключаем так: один провод напрямую на трансформатор, а второй провод через держатель предохранителя и выключатель питания на второй вывод сетевой обмотки трансформатора. Наличие предохранителя в линии сетевого питания обязательное условие надежной и безопасной работы блока питания. Номинал предохранителя можно выбрать на 0.25 А, или вы можете его рассчитать самостоятельно (вспоминаем предварительные занятия).
Вот примерно такие внутренности в корпусе блока питания могут получиться и у вас. А вот так может получиться передняя панель:
Вид пока еще не очень привлекательный, а все потому, что лицевая панель пока существует в черновом варианте, так сказать, еще не облагорожена. А как ее облагородить и сделать внешний вид передней панели не хуже чем у заводских изделий я вам расскажу и покажу в разделе “Технологии” – “Описание программ”, где на примере нашего блока питания и программы для редактирования передних панелей Front Designer, мы рассмотрим разработку передних панелей радиолюбительских устройств.
И еще немного о корпусе устройства. После того как вы собрали каркас корпуса я рекомендую пройтись по всем местам соединения заготовок эпоксидным клеем (кроме верхней крышки). Это позволит усилить конструкцию, избежать в дальнейшей эксплуатации ненужных скрипов, скрыть неровности, а после высыхания клея шлифовкой выравнять все углы и неровности. Затем всю конструкцию (вместе с верхней крышкой) необходимо обезжирить и покрасить в любой понравившийся вам цвет. Краску для этого можно использовать автомобильную в баллончиках.
Если у вас есть вопросы, какие-то моменты вам не понятны, или вы хотите изучить или понять какой-то вопрос поглубже, то я жду вас на форуме в соответствующем разделе.
А вот такой у меня получилась передняя панель, после получасовой работы в программе Front Designer:
Для Сергея. Выводы трансформаторов.
Самый простой двухполярный ИИП | AUDIO-CXEM.RU
Сегодня речь пойдет о схеме двухполярного импульсного источника питания, которая является одной из самых простейших. Мощность представленного ИИП находится в пределах 100Вт при работе на статическую нагрузку (резистор), что достаточно для использования в связке с двумя усилителями по 50Вт или одного канала мощностью 100Вт.
Схема ничем не отличается от представленной в статье «Импульсный источник питания для TDA7294 на IR2153». Отличием является импульсный трансформатор, а точнее форма сердечника. В этой статье будет продемонстрирован способ намотки трансформатора на сердечнике EI-образной формы, в прошлой же статье я наглядно показывал, как выполнить намотку на кольцевом ферритовом сердечнике.
Схема простого двухполярного ИИП
Работу схемы я разъяснял в статье со ссылкой выше.
Сердцем источника является драйвер управления полевыми транзисторами IR2153. При указанных на схеме R2=15кОм и C3=1нФ, драйвер будет работать на частоте 47кГц.
Да, у этого ИИП нет защиты от перегрузки и короткого замыкания, поэтому и является самой простой схемой двухполярного источника. При выходе из строя ИИП, на его выходе напряжение падает до нуля, поэтому усилителю он вреда не принесет, разве что пострадает сам.
Учитывая, что выходная мощность источника составляет 100Вт, система мягкого старта для ограничения токов зарядки емкостей (для облегчения работы ключей на старте) здесь в принципе и не нужна. При первом старте пусковой ток ограничивается термистором NTC.
Компоненты схемы
Резистор R1 должен быть мощным, не менее 2Вт, так как на нем выделяется большое количество тепла. Можно соединить в параллель два резистора по 36кОм. Изначально я установил R1 мощностью 1Вт (другого не было), но позже был вынужден заменить на более мощный. Остальные резисторы мощностью 0.25Вт.
Все конденсаторы керамические, кроме C6, C10 и C11 (пленка).
Варистор защищает схему от бросков напряжения в сети выше 275В, поэтому он должен быть рассчитан на такое напряжение. При броске, он замыкает сетевой вход, и предохранитель F1 перегорает.
Термистор NTC сопротивлением 5Ом (5D7, 5D9, 5D11).
Диодный мост VDS1 на ток не менее 4А.
Диод VD1 не обязательно должен быть быстрым (HER108), любой выпрямительный диод на ток 1А и напряжение 1000В.
Диод VD2 должен быть быстрым (FR, UF, SF или HER) на ток 1А, можно установить HER108, FR107, FR157.
Диоды VD3-VD6 должны быть очень быстрыми (FR302, FR304, FR602, UF600B, BY397 и так далее) на ток не менее 3А и обратное напряжение более 100В. Можно установить диоды Шоттки (КД213А и другие). Также для повышения надежности, можно соединить в параллель по два диода.
Транзисторы VT1 и VT2 должны быть оригинальными. При установке подделок ИИП может выходить из строя еще при запуске, либо при минимальной нагрузке. Транзисторы нужно установить на радиатор через изоляционные втулки и прокладки, иначе будут искры и дым.
Трансформатор
Сердечник трансформатора двухполярного импульсного источника питания должен иметь габариты 33×12.7×9.7мм. Обязательно проверьте отсутствие зазора у сердечника, его быть ни в коем случае не должно!
Как разобрать трансформатор от блока питания персонального компьютера я описывал в статье.
Подобные сердечники применяются в блоках питания ПК (мощностью до 300Вт).
Первичная обмотка.
Эмалированным медным проводом (диаметр по меди не мене
Лабораторный блок питания двухполярный | 2 Схемы
Если нужен приличный блоком питания с регулируемым током и напряжением — редакция сайта «Две Схемы» советует вспомнить старый добрый стабилизатор uA723. Проверен он уже тысячи раз радиолюбителями по всему Миру и показал прекрасные результаты — тогда зачем изобретать велосипед? Схема обеспечивает симметричное двухполярное выходное напряжения в диапазоне до 26 В и токе до 3 А. Превышение максимального значения тока вызывает отключение выходных транзисторов, что можно рассматривать как защиту по току. В каждой мастерской должен быть именно такой двухполярный БП — это полезно например в конструкциях с использованием операционных усилителей, а также для предварительного запуска усилителей мощности с двойным питанием. Преимуществом описываемой здесь конструкции является очень низкая стоимость сборки. В общем данный блок питания станет очень серьезным помощником домашней радиотехнической лаборатории.
Схема блока питания на uA723
Принципиальная схема БППрямому регулированию подвергается плечо положительного напряжения, в то время как отрицательная часть следует за положительной благодаря системе построенной на операционном усилителе TL081.
Описание работы
Стабилизатор U1 (uA723) включает в себя температурно компенсированный источник опорного напряжения, усилитель ошибки и выходной транзистор, обеспечивающий ток до 150 мА. Микросхема работает в типовой конфигурации, в которой его внутренний усилитель ошибки сравнивает напряжение с делителя R0 (5,6 k) — R3 (4,7 k) с напряжением, какое наличествует на выходе блока питания. Резисторы R4 (220R), R5 (6,8 k) и потенциометр P1 (50k) обеспечивают регулирование напряжения выхода.
Усилитель ошибки работающие в петле отрицательной обратной связи регулируется с помощью элементов R1 (560R), T1 (BD911) и T2 (BD139) меняя выходное напряжение так, чтобы его доля была равна установленному напряжению через делитель R0 — R3. Изменение положения ползунка P1 приведет к изменению выходного напряжения, поэтому усилитель ошибки, соответственно, изменит выходное напряжение, чтобы эти изменения компенсировать.
Например: перемещение ручки потенциометра в направлении R4 повысит напряжение на его ползунке, что заставит стабилизатор (через усилитель ошибки) снизить выходное напряжения так, чтобы потенциал регулятора снизился до уровня устанавливаемого делителем R0 — R3.
![]()
Резистор R2 (0.2 R/5W) вместе с транзистором Т6(BC548) работает в узле ограничения тока. Если ток, потребляемый от источника питания растет — падение напряжения на R2 также возрастает. Открытый транзистор Т6 при снижении напряжения равным примерно 600 мВ вызовет короткое замыкание между эмиттером и базой транзисторов управления и тем самым ограничит ток, протекающий через T1. Ток будет ограничен значением примерно 0.6/R2, что в данном случае дает 3 Ампера. Номинал резистора следует подобрать самостоятельно, учитывая трансформатор и его характеристики. В роли T1 в большинстве случаев потребуется применение нескольких транзисторов соединенных параллельно, чтобы распределить протекающий ток и мощность на несколько элементов.
За регулирование отрицательной половины питания отвечает операционный усилитель U2 (TL081). Его выход управляет транзисторами T3 (BD140) и T4(BD912). Резистор R9 (560R) ограничивает ток базы Т3, выполняя аналогичную роль, как R1 в положительной половине питания. Делитель R6 (100k), R7 (100k) и P2 (10k) подобран таким образом, чтобы в состоянии, установленном на регуляторе P2 был потенциал массы. Увеличение напряжения на выходе положительной части блока питания приведет к увеличению потенциала на ползунке потенциометра P2, одновременно ОУ U1 стремясь уровнять потенциал на обоих своих выходах приведет к снижению отрицательной половины питания с помощью регулировочных элементов T3 и T4. Напряжение на отрицательной половине, соответственно, будет следовать за положительным, если только делитель R6, R7, P2 будет установлен на деление 1:1.
Транзистор T5 (BC557) ограничивает ток в отрицательной половине питания таким же образом, как и T6 в положительной половине. Максимальное значение тока в данном случае это 0.6/R8.
К разъемам IN1 и IN2 подключаются две независимые обмотки трансформатора питания. Напряжение будет одинаково на мостах Br1 (5А) и Br2 (5А) и будет фильтроваться с помощью емкости C1, C2 (4700uF) и C3, C4 (100nF), после чего попадает на транзисторы T1 и T4 (напоминаем, что каждый из них может состоять из нескольких транзисторов, соединенных параллельно). На выходе напряжение фильтруют конденсаторы C6, C7 (470uF) и C9, C10 (100nF). Выходом блока является разъем OUT на котором и будет регулируемое напряжение симметрично относительно массы. Кроме того, на плате можно установить делитель R10-R13, благодаря которому возможно измерение выходного напряжения с помощью микроконтроллера с преобразователем ADC.
На вход схемы необходимо подключить трансформатор с двумя обмотками напряжением 2×24 В и мощности в зависимости от ваших потребностей.
Сборка лабораторного блока питания
Плата печатная ЛБПСхема паяется на печатной плате (скачать). Монтаж не сложен, элементы на ней находятся далеко друг от друга. Однако необходимо определить значения R3, Р1 и R5. Резистор R3 определяет уровень напряжения на входе усилителя ошибки (pin 5 U1) и его подбор является простым. По расчётам резистор R3 равен 4,7 k, что дает напряжение на усилителе ошибки около 3,2 В. Второй шаг-это подбор значения потенциометра P1 и резистора R5, от которых зависит максимальное выходное напряжение блока питания. Предполагая, что требуемый диапазон регулирования выходного напряжения от 3 В до 26 В легко рассчитаем значение R5 чуть ниже 7к. Принимаем ближайшее значение из стандартного ряда и получаем R5 = 6,8 к.
После сборки мелких элементов на плате, пришло время для установки силовых транзисторов T1 и T4, они должны быть установлены на отдельный радиатор. Если по какой-то причине будет только один радиатор — примените изоляционные прокладки под транзисторы. Если потребление тока от блока питания не будет большим — до 0.5 А, можно поставить только один транзистор. Если таки нагрузки планируются несколько ампер — можно использовать параллельное соединение транзисторов в соответствии со схемой их соединения.
Регулированный блок питания 0-30В
Регулируемый биполярный блок питания | Модульный синтезатор
Для питания модульной системы необходим биполярный источник питания, обеспечивающий напряжение от ± 9 В до ± 18 В в зависимости от используемой системы. Могут потребоваться дополнительные линии электропередач. Стандарт Eurorack предлагает симметричную линию ± 12 В и дополнительную линию + 5 В, что полезно для микроконтроллеров и некоторых других цифровых ИС. Можно использовать компьютерный блок питания для модульных систем, но блоки питания с ШИМ имеют довольно нестабильное напряжение в изменчивой среде. Из-за этого настройка и громкость синтезатора, питаемого от источника ШИМ, могут иметь нежелательные модуляции.В некоторых случаях его можно использовать в качестве художественного эффекта, но для получения полностью предсказуемого звука вам понадобится традиционный источник питания, в котором используется трансформатор.
Вот один из таких блоков питания — регулируемый биполярный блок питания. Он дает достаточно мощности практически для любой системы.
Напряжение регулируемого источника питания может быть точно установлено для получения идеальной симметрии для генераторов, стабильной настройки и низкого уровня шума. Этот источник питания состоит из мостового выпрямителя, фильтра и трех идентичных частей схемы восстановления напряжения, защиты и индикации. Положительная линия работает следующим образом: мост ( D1 , D3 ) выпрямляет переменный ток, затем он фильтруется двумя конденсаторами по 3300 мкФ ( C1 , C3 ) и керамическим дисковым конденсатором 100n. ( C5 ), которые подключены параллельно. Затем идет регулятор LM317, работающий как регулируемый регулятор. ( IC2 , R2 , R5 , D8 , C8 ) Требуемый резистор нагрузки ( R8 ) и светодиодный индикатор обеспечивают индикацию минимальной нагрузки. для регулировки.Сопротивление резистора должно быть от 2 до 10 кОм, поэтому лучше использовать не очень яркий светодиод.
Отрицательная линия работает так же, как и положительная, за исключением LM337, используемого в качестве регулятора.
Эта схема очень похожа на решение Кена Стоуна. Думаю, он тоже был вдохновлен таблицей данных LM317.
Версия 1.2
Схема
Вид компонентов
Компоновка печатной платы (зеркальное отображение)
BOM
Деталь | Кол. Акций | Значение | Упаковка |
C1, C2, C3, C4 | 4 | 3300u 35v | E7,5-18 |
C5, C6 | 2 | 100n 35v Керамика | C050-024X044 |
C7, C8, C9 | 3 | 10u 16v | E2,5-5 |
D1-D13 | 13 | 1n4004 / 1n4002 | DO41-10 |
IC1, IC2 | 2 | LM317 | 317TS |
IC3 | 1 | LM337 | 337TS |
J1, J2, J3, J4 | 4 | Клеммная колодка 2POS 5MM
(или 2 шт. |
ТЕРМИНАЛ_БЛОК_2P_5 |
JP1 | 1 | Заголовок 2 × 8 контактов | 2X08 |
LED1 | 1 | 3мм красный светодиод | СветодиодLED3MM |
LED2 | 1 | 3мм желтый светодиод | СветодиодLED3MM |
LED3 | 1 | 3 мм синий светодиод | СветодиодLED3MM |
R1, R2, R3 | 3 | 10K Триммер Bourns W3296 | S64W |
R4, R5, R6 | 3 | 1 кОм 1/4 Вт 1% | 0207/10 |
R7 | 1 | 4K7 1/4 Вт 1% | 0207/10 |
R8, R9 | 2 | 10K 1/4 Вт 1% | 0207/10 |
Узел в сборе (старая версия) выглядит так:
Эта схема опубликована под лицензией Creative Commons «Attribution-NonCommercial-ShareAlike» 3. 0 лицензия.
Любое использование сверх этой лицензии должно быть согласовано с автором.
с регулируемым комплектом diy — интернет-магазины и отзывы о блоке питания с регулируемым комплектом diy на AliExpress
Отличные новости !!! Вы попали в нужное место для источника питания с регулируемым комплектом «сделай сам». К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress.У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как этот лучший блок питания с регулируемым комплектом DIY станет одним из самых популярных бестселлеров в кратчайшие сроки. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что получили блок питания с регулируемым комплектом «сделай сам» на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в блоке питания с регулируемым комплектом «сделай сам» и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз.
Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, мы думаем, вы сможете приобрести power supply with managed diy kit по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.
Примеры применения биполярных источников питания | Идеал Matsusada Precision для
Мы предложим приложения, основанные на достижении Matsusada.
Что такое биполярный источник питания?
Это четырехквадрантный биполярный источник питания для источника и потребления энергии.Блок питания доступен с двумя режимами постоянного напряжения (CV) и постоянного тока (CC). Используя преимущества встроенных функциональных генераторов, также возможно для определенных серий биполярных источников питания генерировать базовые формы входных сигналов, включая синусоидальную волну и прямоугольную волну.
Также доступны произвольные волны.
Для получения дополнительной информации посетите страницу «Технические знания» на нашем сайте.
ИНДЕКС
Автомобили и транспортные средства
Разработка и оценка двунаправленных инверторов и преобразователей
В последние годы источники питания, устанавливаемые на транспортные средства, были переведены с 12 вольт на 48 вольт. Чтобы не отставать от этой тенденции к более высоким напряжениям, в том числе в квазигибридизированных транспортных средствах, пришлось пересмотреть конструкции различных автомобильных компонентов. Чтобы удовлетворить потребность в дополнительной экономии энергии, нам необходимо разработать такие двунаправленные устройства, как устройства постоянного / постоянного тока, чтобы повысить эффективность хранения регенерированной электроэнергии. Кроме того, по мере того, как компьютеризация автомобилей продвигается, существует быстро возрастающая потребность в тестах на шум, включая кривые кривых проворачивания электрических компонентов, установленных на автомобиле.Биполярные источники питания являются наиболее подходящими кандидатами для оценки шума, нагрева и отклика этих устройств и компонентов. Кроме того, использование высоких напряжений также важно для оценки электромобилей и сверхвысоких напряжений. Matsusada Precision предлагает широкий ассортимент биполярных источников питания для удовлетворения потребностей каждого пользователя.
Производительность, необходимая для этого приложения : Большая емкость Высокоскоростной Высокое напряжение
Вот почему выбираются биполярные блоки питания Matsusada
Matsusada предлагает 147 моделей биполярных источников питания, включая модели высокого напряжения и большой емкости, которые не могут сравниться с нашими конкурентами.Это позволяет клиентам выбрать правильный источник питания, который лучше всего подходит для их индивидуальных применений. У нас есть блок питания, который может обеспечить мощность до 2000 Вт от одного блока, что позволяет использовать компактную конфигурацию, когда требуется большая мощность. Блоки питания конкурентов могут выдавать максимум около 400 Вт от одного блока.
Разработка и оценка магнитных материалов для двигателей
Биполярные источники питания также используются для оценки гистерезисных характеристик магнитных материалов.Гистерезис — это характеристика, имеющая большой
влияние на КПД электромоторов. Для плавного и точного измерения гистерезисных характеристик необходимо использовать высокоскоростной биполярный источник питания.
Требуемые характеристики Высокая скорость Высокое напряжение
Оценка катушек зажигания
Оценка формы кривой запуска во время вращения стартера с помощью симулятора является важным методом проверки катушек зажигания.Высокоскоростной биполярный источник питания, способный выдавать различные формы волны, необходим для тестирования современных автомобилей, в которые сложно встроены различные электронные устройства. Некоторые из биполярных источников питания Matsusada Precision оснащены функцией памяти, так что необходимые формы сигналов могут быть предварительно сохранены в памяти и вызваны при необходимости для тестирования.
Производительность, необходимая для этого приложения : Высокая скорость
Оценка потерь меди и железа в реакторе большого трансформатора
Биполярные блоки питания часто используются для оценки больших трансформаторов, установленных на специальных транспортных средствах. Эти трансформаторы имеют медные обмотки. При использовании высокочастотного напряжения потери меди возникают из-за так называемого скин-эффекта. В небольших трансформаторах потери меди незначительны. Но более крупные трансформаторы могут сэкономить энергию за счет уменьшения этих потерь. Биполярные источники питания используются для выбора типа проводов для реакторов, чтобы уменьшить потери меди и железа.
Производительность, необходимая для этого приложения : Большая емкость
Разработка датчиков тока и шунтирующих резисторов
По мере роста популярности автомобилей HEV и EV, включая специальные автомобили, технология контроля электрического тока становится все более важной.Уменьшение потерь электрического тока становится необходимостью, чтобы увеличить расстояние и время в пути автомобилей. Чтобы достичь этого, важно улучшить характеристики датчиков электрического тока, которые контролируют ток, протекающий от батарей к различным электрическим и электронным устройствам в автомобилях. Биполярные источники питания хорошо подходят для оценки точности, скорости отклика и температуры датчиков электрического тока.
Производительность, необходимая для этого приложения: Большая емкость Высокоскоростной Высокое напряжение
Разработка и оценка двигателей и периферийного оборудования
При оценке двигателей, использующих переменный источник питания общего назначения, источник питания может быть поврежден или выйти из строя из-за противодействия электродвижущей силе при оценке некоторых элементов.Поэтому при разработке и оценке двигателей использовалась комбинация электронных нагрузок и регулируемого источника питания. Поскольку биполярный источник питания может выводить сигнал во всех четырех квадрантах, нет необходимости объединять электронные нагрузки. Однако до сих пор биполярный источник питания большой емкости не был доступен, поэтому можно было оценивать только двигатели с малой номинальной мощностью. Компания Matsusada Precision разработала компактный биполярный источник питания большой емкости, который позволяет также оценивать большие двигатели.
Производительность, необходимая для этого приложения: Большая емкость Высокоскоростной Высокое напряжение
Оценка электромагнитных клапанов
Скорость работы электромагнитных клапанов влияет на расход топлива автомобилей. Наш биполярный источник питания способен обеспечить высокоскоростной отклик для проверки работы электромагнитных клапанов.
Производительность, необходимая для этого приложения: Высокоскоростной
Разработка и оценка разъемов
Автомобили с электронным управлением содержат большое количество кабелей и разъемов, расположенных сложным образом.Отсутствие оценки шума и тепла может привести к серьезной аварии. Биполярные источники питания используются для имитации различных источников шума.
Производительность, необходимая для этого приложения: Большая емкость Высокоскоростной
Моделирование кривых запуска двигателя специального назначения
Необходимо моделировать кривые запуска двигателя различных автомобилей, включая специальные. С помощью мощного или высокоскоростного двухполюсного источника питания можно моделировать кривые запуска различных типов специальных транспортных средств.
Производительность, необходимая для этого приложения: Большая емкость Высокоскоростной
Общие электронные / электрические изделия
Разработка и оценка инверторов и преобразователей
Инверторы и преобразователи широко используются в различных отраслях промышленности, включая бытовые электроприборы, промышленное оборудование и автомобили. Биполярные источники питания используются при оценке таких продуктов, например, при тестировании вариаций на входе и измерении эффективности.
Производительность, необходимая для этого приложения: Большая емкость Высокое напряжение
Разработка и оценка двигателей
Если двигатель оценивается с использованием переменного источника питания общего назначения, он может быть поврежден или выйти из строя из-за противодействия электродвижущей силе. Биполярные источники питания могут поглощать любую противодействующую электродвижущую силу, которая может возникнуть при оценке двигателей.
Производительность, необходимая для этого приложения: большая емкость
Создание магнитного поля
Биполярные источники питания также используются для оценки магнитных датчиков, таких как устройства Холла, для измерения магнитных характеристик полупроводников с помощью памяти MRAM нового поколения и для проверки работы электромагнитных клапанов.
Производительность, необходимая для этого приложения: Большая емкость Высокоскоростной
Разработка и оценка светодиодов, мощных светодиодов и светодиодов
Биполярные источники питанияиспользуются для включения и выключения светодиодных или LD-устройств с высокой скоростью и для проведения долговременных испытаний на срок службы, предотвращая накопление тепла.
Производительность, необходимая для этого приложения: Высокоскоростной
Вот почему выбираются биполярные блоки питания Matsusada
Мощность, подаваемая на оптические полупроводники, относительно мала. Наш настольный биполярный источник питания, доступный только от Matsusada, может использоваться для этого приложения. Нет необходимости в большом энергоснабжающем оборудовании. Наш настольный биполярный источник питания позволяет проводить простые тесты, требующие 60 Вт или меньше.
Разработка и оценка разъемов
Растет число случаев, когда термический КПД соединителей может быть улучшен для экономии энергии. Биполярные блоки питания реагируют с высокой скоростью, что позволяет проводить тепловые оценки до и сразу после подачи напряжения.
Производительность, необходимая для этого приложения: Большая емкость Высокоскоростной
Разработка и оценка аккумуляторов и зарядных устройств
Биполярные источники питания, которые могут выводить сигнал в четырех квадрантах, широко используются для оценки характеристик батарей, моделирования поведения батарей и оценки зарядных устройств батарей.
Производительность, необходимая для этого приложения: Большая емкость Высокоскоростной
Моделирование выходных сигналов
Периферийное оборудование, такое как бытовые электроприборы и другие электрические устройства, обычно требует определенных форм сигналов. Необходимо проверить, не будут ли бытовые электроприборы и другие электрические устройства нормально работать, если формы сигналов от внешних источников искажены. Биполярные источники питания отлично подходят для таких испытаний. Путем моделирования и вывода сигналов, которые могут вызвать сбои в работе, можно проверить надежность бытовых электроприборов и других электрических устройств.
Производительность, необходимая для этого приложения: Высокоскоростной
Гальваническая промышленность
Периодическое обратное (PR) гальваническое покрытие и анодирование
Гальваника PR — это высокоточный метод нанесения покрытия.После первого нанесения покрытия прикладывают отрицательное напряжение для удаления выступов или грязи с металлической поверхности. Эта процедура повторяется для удаления всех краев с металлической поверхности, что позволяет точно покрыть поверхность объекта. Поскольку биполярные блоки питания могут выводить сигнал в четырех квадрантах, требуется только один блок питания вместо двух. Время цикла нанесения гальванических покрытий PR может быть уменьшено за счет использования мощных, высокоскоростных биполярных источников питания Matsusada.При анодировании, если низкое напряжение на определенном
частота применяется к объекту, который нужно покрыть, скорость химической реакции может быть увеличена. Когда есть множество объектов, которые нужно покрыть, и поскольку каждый объект имеет
их собственная частота, при которой химическая реакция может быть увеличена, использование соответствующей частоты увеличивает эффективность анодирования.
Производительность, необходимая для этого приложения: Большая емкость Высокая скорость
Point Вот почему были выбраны биполярные блоки питания Matsusada
Наилучшая частота нанесения зависит от размера и площади поверхности покрываемых объектов.Matsusada Precision предлагает широкий
линейка биполярных источников питания для удовлетворения почти всех частотных потребностей.
Пульсационное испытание конденсаторов
Широкополосные биполярные источники питания доступны для тестирования пульсаций, реагируя на более высокие частоты. Они полностью оснащены функциями безопасности, включая снижение тока. Кроме того, биполярные источники питания, которые могут добавлять переменный ток к постоянному, подходят для оценочных испытаний и старения.
Оценка ВАХ фотоэлектрических панелей
Биполярные источники питания используются для измерения ВАХ путем снижения тока, который подобен электронным нагрузкам, для контроля напряжения / тока в данный момент.Они также подходят для полевых испытаний с использованием солнечной энергии.
Усиление сигналов цифровых функциональных генераторов
Поскольку четырехквадрантные биполярные источники питания обеспечивают вывод усиленной формы волны, созданной функциональным генератором, без изменений, их можно применять для обработки, такой как нанесение импульсов и обработка поверхности.
Биполярные источники питания Модельный ряд
* Для получения дополнительной информации о наших линейках продуктов для высокого напряжения, пожалуйста, обратитесь к странице «Усилитель высокого напряжения»..
Блок питанияEurorack — самостоятельное биполярное модульное решение для питания синтезаторов
Это простой в сборке биполярный блок питания Eurorack, который выдает чистый источник биполярного напряжения +/- 12 В для синтезаторов Eurorack. Обратите внимание, что эта схема не обеспечивает 5В.
Эта схема / комплект имеет место на печатной плате для входного разъема постоянного тока для настенной бородавки, поэтому вам не нужно соединять настенную бородавку, а также евростойку, Molex (MOTM) и проводные выходы на печатной плате, чтобы обеспечить питание для работы не только как блок питания Eurorack, питающий несколько модулей, но и как стендовый источник питания для тестирования сборок MOTM и Eurorack DIY.
В комплект входит все, кроме настенной бородавки переменного тока (которую легко купить на Amazon или на месте) и дополнительного выходного разъема (евро или MOTM). Чаще всего пользователь подключает выход (после тестирования!) К плате шины для питания нескольких модулей Eurorack через контактные площадки выходных проводов, но есть места для 4-контактного усилителя (MOTM) и разъема Eurorack, если вы хотите использовать его в качестве настольного источника питания или если вы используете 4-контактный разъем для подачи питания на шинные платы.
Обратите внимание, что хотя в комплект входят регуляторы LM78 и LM79, выбранные для систем +/- 12 В, использование другой настенной бородавки и других регуляторов напряжения LM позволит использовать системы с напряжением +/- 9 или 15 В.
Вы должны поставить собственную настенную бородавку, которая выдает от 12 до 15 В переменного тока при токе от 500 до 1000 мА. Выход настенной бородавки ДОЛЖЕН быть AC. Эта стенная бородавка — хороший тому пример.
Это не должен быть первый комплект для сборки, поскольку он содержит в основном поляризованные части, и неправильная установка может привести к возгоранию и / или разрушению других модулей Eurorack. Набор несложен в сборке и имеет небольшое количество деталей, однако на протяжении всего процесса сборки необходимо внимательно следить за тем, чтобы не было ошибок.
Схема очень проста: биполярный сигнал питания переменного тока выпрямляется диодами на положительную и отрицательную мощность, а затем регулируется до 12 В с каждой стороны.Резисторы 2,4 кОм обеспечивают нагрузку, гарантирующую, что схема работает даже без модулей, потребляющих ток, а большие конденсаторы предназначены для очистки сигналов питания. Меньшие колпачки и дополнительные диоды нужны только для безопасности.
Я не несу ответственности за любой вред, причиненный в результате сборки, установки или использования этого источника питания. Создавайте и пользуйтесь на свой страх и риск!
Комплект для сборки регулируемого источника питания постоянного тока(0–30 В, 2 мА — 3 А) Распродажа, цена и отзывы
Набор для сборки регулируемого источника питания постоянного тока (0–30 В, 2 мА — 3 А) Распродажа, цена и отзывы | Gearbest- Сэкономьте 3 доллара с приложением
Загрузите приложение!
Сэкономьте 3 доллара с приложением и только для нового пользователя
- Центр поддержки
- Отправка в /
USD
Выберите региональные настройки
Корабль
Аландских IslandAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntigua И BarbudaArgentinaArmeniaArubaAscensionAustraliaAustriaAzerbaijanBahamasBahrainBalearic IslandsBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBonaireBosnia И HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBruneiBulgariaBurkinaBurundiCambodiaCameroonCanadaCanary IslandsCape VerdeCaroline IslandsCayman IslandsCentral Африканского RepublicChadChileChina mainlandChristmas IslandCocos Килинг IslandsColombiaComorosCook IslandsCosta RicaCroatiaCuracaoCyprusCzech RepublicDemocratic Республика CongoDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrance, MetropolitanFrench GuianaFrench полинезияФранцузские Южные территорииГабонГамбияГрузияГерманияГанаГибралтарГрецияГренландияГренадаГваделупаГуамГуа temalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island и McDonald IslandsHondurasHong Сянган, ChinaHungaryIcelandIndiaIndonesiaIranIraqIrelandIsle из ManIsraelItalyIvory CoastJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKosovoKuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacao SAR, ChinaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall islandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNevisNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorthern Mariana IslandsNorwayOmanPakistanPalauPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairn IslandsPolandPortugalPuerto RicoQatarRepublic из MacedoniaRepublic в CongoReunionRomaniaRussian FederationRwandaSaint BarthelemySaint HelenaSaint KittsSaint LuciaSaint MartinSaint Винсент и GrenadinesSaipanSan MarinoSao Томе и PrincipeSaudi ArabiaSenega lСербияСейшельские островаСьерра-ЛеонеСингапурСловакияСловенияСоломоновы островаСомалиСомалилендЮжная АфрикаЮжная Джорджия и Южные Сандвичевы островаЮжная КореяИспанияАфрика Шри-ЛанкаSt.EustatiusSt. MaartenSudanSurinameSvalbard и Ян MayenSwazilandSwedenSwitzerlandSyriaTaiwan, ChinaTajikistanTanzaniaThailandThe острова Сен-Пьер и miquelonTimor-LesteTogoTokelauTongaTrinidad И TobagoTristan да CunhaTunisiaTurkeyTurkmenistanTurks И Кайкос IslandsTuvaluUgandaUkraineUnited Арабские EmiratesUnited KingdomUnited StatesUnited Внешние Малые IslandsUruguayUzbekistanVanuatuVatican CityVenezuelaVietnamVirgin острова (GB) Виргинские острова (США) Уоллис и FutunaWestern SaharaWestern SamoaYemenYUGOSLAVIAZambiaZimbabwe
Валюта
- Язык
- Веб-сайт страны
Все ВсеMARKETPLACE Выбор лучшего устройстваЖенские сумкиСотовые телефоны и аксессуарыКомпьютеры, планшеты и офисПотребительская электроникаДроны, игрушки и хобби
Пожалуйста, введите адрес электронной почты аккаунта
Как сделать настольный блок питания из старого блока питания ATX
Настольный блок питания — чрезвычайно удобный комплект для любителей электроники, но он может быть дорогим при покупке нового. Если у вас есть старый компьютерный блок питания ATX, вы можете дать ему новую жизнь в качестве настольного блока питания. Вот как.
Как и большинство компьютерных компонентов, блоки питания (БП) устаревают.При обновлении вы можете обнаружить, что у вас больше нет нужных разъемов — или что ваша блестящая новая видеокарта требует гораздо больше энергии, чем может выдержать ваш маленький старый блок питания — установка с двумя графическими процессорами может легко набрать 1000 Вт. И, если вы чем-то похожи на меня, у вас есть тайник старых блоков питания, припрятанный где-то в шкафу. Теперь у вас есть шанс воспользоваться одним из них.
Настольный блок питания — это, по сути, просто способ обеспечить различные напряжения для тестовых целей — идеально подходит для тех, кто постоянно играет с Arduinos и светодиодными лентами. Удобно, что это именно то, что делает компьютерный блок питания — только с множеством разных разъемов и цветных проводов.
Сегодня мы собираемся разделить блок питания до самого необходимого, а затем добавить несколько полезных разъемов в корпус, в которые мы можем подключать проекты.
Предупреждение
Обычно вы никогда бы не открыли блок питания.Даже когда питание отключено, есть большие конденсаторы, которые могут накапливать смертельный электрический ток в течение недель, а иногда и месяцев после включения. Будьте предельно осторожны при работе с блоком питания и убедитесь, что он бездействует в течение как минимум трех месяцев, прежде чем открывать корпус, или убедитесь, что вы надеваете тяжелые перчатки, когда ковыряетесь в нем. Действовать осторожно .
Также обратите внимание, что это безвозвратно повредит блок питания, поэтому вы больше никогда не сможете использовать его на компьютере.
Необходимые компоненты
- Два 2.1-миллиметровый цилиндрический разъем и розетка — я буду питать Arduino напрямую от этого. Два цилиндрических штекера будут использоваться для изготовления силового кабеля «папа-папа».
- Разнообразие цветных розеток 2 мм, таких как эта (можно использовать с банановыми вилками). Вы можете предпочесть терминальные сообщения.
- Термоусадочная трубка 13 мм x 1 м (и меньше, если вы можете позволить себе купить больше).
- Кулисный переключатель SPST (однополюсный, одноходовой).Я использовал один с подсветкой, чтобы он выполнял двойную функцию, как и свет при включении.
- Проволочный резистор 10 Вт 10 Ом.
Строительство
Отвинтите и снимите верхнюю половину корпуса блока питания.Возможно, вам придется вытащить вилку из основной схемы, чтобы полностью отделить крышки.
Это неприятные конденсаторы, в которых содержится огромное количество электричества:
Зачистите вилки и протяните провода через отверстие в корпусе.
Затем свяжите их стяжками по цвету, чтобы сделать вещи немного более организованными.Как общее правило:
- Черный: Земля
- Красный: + 5В
- Желтый: + 12В
- Оранжевый: +3.3В
- Белый: -5В
- Синий: -12 В
- Фиолетовый: + 5 В в режиме ожидания (не используется)
- Серый: индикатор включения
- Зеленый: переключатель ВКЛ / ВЫКЛ
Какие именно линии электропередачи вы выберете для подключения — это ваш выбор, но я решил работать только с 3 положительными линиями — 3.3, 5 и 12 В. Я также не буду использовать фиолетовый или серый провода, вместо этого подключу выключатель с подсветкой на 12 В.
Используйте сверла HSS, чтобы вырезать отверстия подходящего размера в металле — для 2-миллиметровых заглушек и цилиндра постоянного тока требовалось 8-миллиметровых отверстий.Зажмите корпус деревянным бруском. Проделать отверстие для кулисного переключателя было намного сложнее, но вы должны иметь возможность использовать сверло меньшего размера, чтобы вырезать как можно больше, а затем отпилить оставшееся сверло и шлифовальный станок.
Протянуть провода через соответствующие отверстия и припаять гнезда перед тем, как вставлять их в корпус, вероятно, является хорошей идеей; Я этого не делал.
GND, +3.Вилки на 3 В, + 5 В и + 12 В должны легко подключаться. Не забудьте вырезать небольшой кусок термоусадочной трубки и пропустить через него скрученные провода , прежде чем припаять их к клеммам!
Пробка ствола постоянного тока немного сложнее.Поскольку он будет использоваться для питания Arduino, который находится в центре положительного полюса, вы должны подключить несколько желтых кабелей к центральному контакту. Возможно, вы слышали, что Arduino может питаться от внешнего источника 9 В, но встроенный регулятор мощности на самом деле допускает 9–12 В, поэтому 12 В от настольного блока питания должно быть в порядке. Штекерные домкраты имеют 3 контакта, но, очевидно, только один из них подключен к центру. Вы должны увидеть круглую металлическую насадку, но проверьте, где вы купили, если не уверены. Два других контакта — GND, и оба должны быть подключены.Опять же, используйте термоусадочную трубку, чтобы центральный и внешний штырьки случайно не соединились.
Выключатель и индикатор питания
Зеленый провод действует как выключатель питания — просто заземлите его, чтобы включить блок питания.В отличие от обычного выключателя питания, он фактически отключил бы питание от источника. Добавление освещения делает эту часть проекта наиболее сложной.
Переключатели SPST с подсветкой должны иметь 3 клеммы: одна будет обозначена другим цветом или помечена и GND.На противоположную клемму обычно подается напряжение 12 В, тогда остальная часть вашей схемы будет питаться от центрального контакта. Его переключение обеспечит питание цепи, а также немного привлечет свет. Однако у нас это не сработает. Вместо этого поменяйте местами GND и 12V. Подключите один кабель 12 В (желтый) к цветному выводу кулисного переключателя (или к клемме с надписью GND). Подсоедините черный провод (GND) к контакту напротив; и вставьте зеленый кабель в центральный штифт.
Теперь, когда переключатель нажат, светодиод по-прежнему будет гореть, но вместо того, чтобы возвращать 12 В на центральный контакт, заземление будет закорочено с включенным PWR, что приведет к активации нашего блока питания.
Сжимайте трубки!
Наконец, аккуратно потянув термоусадочную трубку вниз, чтобы закрыть переключатели и точки пайки, воспользуйтесь локализованным тепловым пистолетом для их усадки.На самом деле, за этим довольно интересно смотреть.
Раньше:
И после:
Наконец, поддельная загрузка
Для многих источников питания требуется, чтобы нагрузка оставалась включенной — в этом случае мы можем использовать резистор 10 Вт 10 Ом для выполнения этой работы.Подключите его между линиями 5V (красный) и GND. Он будет выделять небольшое количество тепла, но его должно хватить при включенном вентиляторе.
В конце я связал все незакрепленные кабели и накрыл их, чтобы убедиться, что они не касаются других внутренних частей, а затем снова собрал все вместе для проверки.
Я перепутал, с какой стороны разместить вилки и кнопку, так что в итоге они оказались на тесной стороне, некоторые прямо над розеткой переменного тока.Это, конечно, глупо опасно, так как паяные контакты переменного тока могут проткнуть или коснуться вилок питания постоянного тока, посылая неприятный сюрприз либо мне, либо моей Arduino. Я решил это, приклеив между ними немного толстого пластика, но это не идеально. Подумайте дважды, прежде чем сверлить, и убедитесь, что ваши розетки расположены с правильной стороны!
Именно в этот момент я понял, почему этот блок питания вообще был отложен — вентилятор не работал.Не беспокойтесь — сам вентилятор был в порядке, но цепь контроллера была сломана, поэтому я снова открыл его и подключил вентилятор непосредственно к одной из линий 12 В. Наконец, я провел несколько тестов с мультиметром, чтобы убедиться в правильности напряжения.
Теперь у меня есть постоянный настольный блок питания для электронных проектов, и я могу избавиться от постоянного подключения различных адаптеров.Это был познавательный опыт, и были сделаны ошибки: вы должны на них учиться. Дайте нам знать, как обстоят дела у вас!
Безопасно ли использовать Zoom? 6 вопросов конфиденциальности, которые следует учитывать
Об авторе Джеймс Брюс (Опубликовано 681 статья)Джеймс имеет степень бакалавра в области искусственного интеллекта и имеет сертификаты CompTIA A + и Network +.Когда он не работает редактором обзоров оборудования, он любит LEGO, VR и настольные игры.
Ещё от James BruceПодпишитесь на нашу рассылку новостей
Подпишитесь на нашу рассылку, чтобы получать технические советы, обзоры, бесплатные электронные книги и эксклюзивные предложения!
Еще один шаг…!
Подтвердите свой адрес электронной почты в только что отправленном вам электронном письме.
.